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ABSTRACT i

Abstract

Fluid structure interaction in piping systems with internal liquid is analyzed in
the frequency domain. The governing equations are the waterhammer equations
for the liquid, and the beam-equations for the structure. The fluid and structural
equations are coupled through axial stresses and fluid continuity relations controlled
by the contraction factor (Poisson coupling), and continuity and force relations at
the boundaries (junction coupling).

A computer program has been developed using the Finite Element Method as a
discretization technique both for the fluid and for the structure. The discretization
is made to permit analyses of large systems including branches and loops, as well
as including hydraulic piping components. The discretization and the computer
program are verified with experiments, and excellent agreements are found. Com-
parisons of coupled and uncoupled calculations with experiments justify the need to
include fluid structure interaction.

The experiments are made with a piping system designed for investigations of
fluid structure interaction. Excitations are made with a special hydraulic ”disc-
valve” capable of maintaining perfect sine function and constant amplitude in a
frequency range from zero Hz, and up to at least one thousand Hz.

Frequency dependent friction is modelled as stiffness proportional Rayleigh damp-
ing both for the fluid and for the structure. With respect to the waterhammer equa-
tions, stiffness proportional damping is seen as an artificial (bulk) viscosity term.
A physical interpretation of this term in relation to transient/oscillating hydraulic
pipe-friction is given.
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OUTLINE

Outline and Publications

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Review and conclusions of the work in this thesis.

General introduction and a short historical review of Fluid Structure
Interaction in piping systems. Objectives and achievements are also
included.

The mathematical derivation and the physical fundamentals for the
equations governing the interaction between fluid and structure in
piping systems. The derivation leads to the so-called extended water-
hammer equations.

The special Finite Element discretization of the governing equations
used in the computer program, as well as extensions of using the Finite
Element Method (FEM) in pure hydraulic piping analysis.

A mathematical derivation and a physical explanation of the frequen-
cy-dependent damping model presented in this thesis. Included is
an analytical time-domain solution to the linearized water-hammer
equations.

Various piping components found in literature are briefly described in
relation to the Finite Element discretization.

The layout and design of the experiments, and a description of the
computer program written in C4++.

Experimental and numerical results.

A general discussion of the results, and suggestions for further work.
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NOMENCLATURE

Nomenclature

Roman letters

wave velocity

pipe cross-sectional area
general coupling matrix
pipe diameter (inner)
pipe diameter (outer)
damping matrix

pipe wall thickness
Young’s modulus
stationary friction factor
force

force

force vector

gravity constant

shear modulus

pressure head

pressure head vector
Allievi’s pipe constant
pressure head

pressure head vector
moment of inertia
identity matrix

fluid bulk modulus

RSO ZFFTQe A m o gy Qe

energy matrix.
(stiffness matrix)
length

pipe length (general)
Mach number

==

general mathematical potensial

3 3

<

NERE LN dE T Py O00QR WS 23

xi
general mathematical kinetic
energy matrix (mass matrix)
shape function
shape function vector
pressure Pa
pressure Pa
pressure vector Pa
flow m3/s
flow vector m3/s
flow m3/s
flow vector m3/s
radial coordinate m
pipe radius m
transformation matrix
Laplace operator Jw
time S
displacement in x direction m
global vector of variables
fluid velocity m/s
fluid velocity m/s
fluid velocity vector m3/s
displacement in y and z dir. m
coordinate m
valve opening m or mm
valve opening m or mm



xii

Greek letters
« stationary damping constant 1/s

(mass proportional factor)

G general frequency-dependent S
damping factor
(stiffness proportional)
damping ratio
arbitrary weight function
Kronecker delta
strain
generalized pressure
generalized pressure vector
angular displacement rad
bulk viscosity Ns/m?
second viscosity coefficient Ns/m?
frequency-dependent fluid
friction factor Ns/m?
modal eigenfrequency matrix
viscosity Ns/m?
Poisson’s ratio
density
stress
shear stress
modal eigenvector matrix
wave velocity constant
frequency
partial derivative operator

> > 2

>R DI NS
o,

~

kg/m?

VESKWIADITE >

Sub- and superscript

steady state
node/element number one
node/element number two
node a

node b

over/in element,
excitation

fluid (in pipe)

global

17 element number ¢

'Qkhg('b@“@ N = O

NOMENCLATURE

node number j

p  pipe

r radial direction
or mode number

T  transposed

x,y,2 x, y and z direction

T for matrices and vectors:
the derivative in x direction

rp x dir. due to pressure
zu x dir. due to displacement
non-dimensional
° time derivative
Other

Bold fonts represent vectors and ma-
trices.

The mass and stiffness matrices have
retained their names from the original
FEM structural analysis. In this thesis
the mass and stiffness matrices are de-
fined as:

M = A; / NNTdx

K= A, /Nmedaz

where A, and A, are arbitrary constants
with arbitrary units.

Variables not corresponding to this nomen-

clature are stated explicit in the text.



Chapter 1

Review and conclusion

A theoretical and experimental study of Fluid Structure Interaction (FSI) in piping
systems is presented. The work is performed in the frequency-domain, and the
interaction is between the pipes and internal liquid.

Three objectives have been achieved in addition to a new hydraulic damping
model:

e A general computer program for frequency-domain FSI calculations of hy-
draulic piping systems has been produced.

e An experimental rig to verify and improve the computer program and for
future FSI research has been built.

e A new frequency-dependent damping model for use in hydraulic calculations
both in frequency and time-domain is proposed, as well as an analytical solu-
tion to the waterhammer equations.

e Continuation of the research on non-stationary flow phenomenon at the Water
Power Laboratory at NTNU.

The computer program uses the Finite Element Method (FEM) as a discretiza-
tion method both for the fluid and the structure. Because of the choice of variables
and their positions in the matrix system, it is capable of analyzing systems with
loops and branches. Other hydraulic piping components such as pumps and valves
are included, and inclusion of different structural boundary conditions is straight-
forward because of the FEM discretization. The program is based on the extended
waterhammer equations. This means that the Poisson FSI coupling is included
within the governing equations. Coupling at junctions is included in the discretiza-
tion and consists of pressure forces acting on the pipe and changes in the continuity
because of moving boundaries. The program is verified with experiments made on
the experimental rig.



2 CHAPTER 1. REVIEW AND CONCLUSION

The experimental apparatus consists of an L-shaped piping system (one horizon-
tal and one vertical reach) supported only at the upstream and downstream end.
The pipes are long, slender and thin walled, which ensure that FSI effects are large.
Oscillations are made with a specially designed valve which is capable of opening
and closing in a perfect sine shape in a wide frequency range. (The range is 0 to
300 Hz in the current version, but the can be extended up to at least 1000 Hz by
changing a disc responsible for the sine functions). Excellent agreement between
calculations and experiments are found.

For the particular experimental system presented, calculations without FSI give
maximum acceleration amplitudes 10 times larger than those measured and correctly
predicted by calculations performed with FSI. This demonstrates the importance of
including FSI in the calculations. At other frequencies, pressure-amplitude peaks
calculated without FSI are in fact nonexistent in both measurements and calcula-
tions with FSI and vice versa.

A new frequency-dependent damping model for hydraulic flow is proposed. The
model is essentially stiffness proportional damping, which is found to be an artificial
bulk viscosity term in the Navier-Stoke’s equations. Because the model is integrated
directly into the governing equations, it can be used in both time and frequency-
domain. The use of it requires no iteration because the frequency and amplitude
dependence are included implicitly, thus the speed of the calculations will be almost
identical to undamped calculations. The model is compared with experiments pre-
sented in this thesis and experiments found in literature, and it is clear that excellent
agreements can be achieved. In relation to FSI the model simplifies the calculations
considerably because the same damping model is used both for fluid and structure.
However, the model is in its early stages of development and further work is needed
before it can be used in practical calculations.

As a concluding remark it can be stated that the program is capable of cal-
culating FSI in piping systems in the frequency-domain. Both fluid pressures and
structural accelerations can be calculated with a high degree of accuracy. Currently
the program can calculate general two-dimensional (planar) piping systems with
loops, branches and hydraulic components. Since all the fluid structure interaction
mechanisms are included, an extension to three dimensions is straight forward.



Chapter 2

Introduction

Fluid Structure Interaction (FSI) in piping systems is the study of both the hy-
draulic and the structural behaviour of a piping system where the interactive forces
between the two elements are taken into account. In general FSI is considered a
dynamic phenomenon, (transient or oscillatory motion), as opposed to hydrostatic
phenomena.

Traditionally, and still today, the dynamic structural behaviour of a piping sys-
tem caused by waterhammer is calculated using the results of a waterhammer analy-
sis as input to the structural analysis (this is called an uncoupled analysis). In many
cases the results obtained from this analysis are adequate, but in other cases the
results may equally well be erroneous. It is also important to note that uncoupled
hydraulic pressure and flow calculations in many circumstances will produce wrong
results. Research and development of calculation and design methods aiming at safer
and more reliable piping systems is therefore of interest for scientific, engineering
and commercial reasons.

Equations describing the hydraulic and structural behaviour with interaction,
have been available for some time in scientific literature, and several scientists and
researchers have made contributions with experiments and analytical work. Still,
development of general purpose piping software that include FSI is in its infancy,
although commercial time-domain software, based on iteration procedures, have ex-
isted for a few years (FLUSTRIN [53]). Programs for frequency-domain calculations
are not commercially available, but several proposals can be found in the literature.
None of these programs are capable of analyzing systems with loops and/or branches
(as far as the author knows). Thus, a lot of work has to be done before the knowl-
edge, both mathematical /numerical and practical/experimental, is made available
for use in general engineering purposes.

FSI is by its very nature the marriage of two different disciplines. The problems
this raises are just as much of a human nature as of a physical/mathematical nature.
In structural engineering the Finite Element Method (FEM) is by far the method

3



4 CHAPTER 2. INTRODUCTION

of choice and has been so for a long time. Many very sophisticated commercial
programs exist both for time- and frequency-domain calculations. In the hydraulic
communities FEM is apparently obsolete, and the method of choice is the Trans-
fer Matrix Method (TMM) for frequency-domain calculations, and the Method Of
Characteristics (MOC) for time-domain calculations. This adds some extra diffi-
culties both in the process of defending the choice of method and in explaining the
details.

Since FSI in piping systems is a relatively new line of research the work that
has to be done and is being done with respect to FSI in piping systems can be
summarized in four points:

1. Experimental research to give a broader basis for development of good com-
puter programs and to increase the general understanding and knowledge.

2. Development of numerical schemes and computer programs, both as a research
tool and for use in engineering work.

3. Make guides based on experiments, on site measurements and computer pro-
grams as to show when FSI is of importance for more thoroughly calculations
of a piping system including FSI.

4. Find design criteria for piping systems that can be used for everyday engineer-
ing purposes to prevent unwanted FSI to occur.

The work presented in this thesis addresses the first two points and partly the
third. New contributions in the form of experiments and the prototype of a general
purpose computer program for FSI calculations in frequency-domain are presented
(eigenvalue- and frequency response analysis). The program is based on the Finite
Element Method (FEM).

The last two points which may have the largest practical interest and value in
everyday engineering practice, must be based on points one and two. It is the authors
hope that the developed FEM software along with the experiments will contribute
to the making of these guides and criteria to be used in the design of safer, more
reliable and less noisy piping systems.



2.1. DEFINITIONS )

2.1 Definitions

The following definitions are used different in various literature. In this thesis the
definitions relating to FSI are:

e A calculation is said to be coupled when two or more different variables!
(typically fluid flow and structural displacement), affect each other mutually
through one or more couplings.

e In an uncoupled calculation there are no linkage between two types of variables,
or the linkage acts only one way.

e A coupling is a mechanism that links one type of variable to the other, but
not necessarily back again. (A typical traditional calculation of structural
displacements due to waterhammer, has coupling from fluid to structure, but
not from structure to fluid. Thus, the calculation is uncoupled).

e In an FSI (Fluid Structure Interaction) calculation, there are couplings both
ways. That is, F'SI calculations are always coupled. In this thesis all FST
calculations have Poisson coupling and two-way junction coupling.

e The extended waterhammer equations are the two one-dimensional coupled
wave equations describing the longitudinal equation of motion for the pipe,
and the momentum and continuity for the fluid. (In literature this name
is often used for the more general two-dimensional equations describing the
equations of motion for the pipe and the momentum and continuity relations
for the fluid, with different levels of simplification.)

e The name four-equation model is used in the literature as the name for the
four coupled first order one-dimensional equations describing the longitudinal
equation of motion for the pipe and the momentum and continuity for the
fluid. They are essentially the same as the extended waterhammer equation
defined above, since two one-dimensional wave equations can be described by
four first order equations. For use in MOC they must be described as first
order equations, but when using FEM it is often more practical to use wave
equations. In this thesis the name four-equation model is a pseudonym for the
name extended waterhammer equations.

'In modal analysis the word coupled and uncoupled are used to describe the matrices.
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2.2 Waterhammer

The equations describing the dynamic behaviour of fluid flow in pipes are often called
the waterhammer equations or Allievi’s equations after L. Allievi who pioneered
research in this area in the beginning of this century. The equations are two coupled
one-dimensional linear partial differential equations (continuity and momentum)
relating fluid pressure and fluid velocity.

Mathematically, the equations are standard one-dimensional wave equations, of-
ten with a nonlinear damping term. The convective term can be neglected for liquid
flows because of low Mach numbers. This wave behaviour of the equations is used to
its full extent in the most popular solution method, the method of characteristics.
Because of the linearity the equations are easily transformed to the frequency-domain
where they can be solved analytically.

These equations can be derived in several ways. Later in this thesis (Chapter
3.1) they are derived from the Navier-Stokes equations.

2.3 Structural dynamics

The pipe structure is described using beam equations. In other words, the pipe
can bend in two directions, stretch in one direction and obtain torsional moment.
All these equations are wave and quasi-wave equations that are independent of one
another, second order effects are neglected. The simplifications made are actually
quite large when one considers the pipe as a thin-shelled structure. However, for
the majority of piping structures these simplifications have literally no measurable
effect. The reason for this is that the length to diameter ratio is so large that
all frequencies of interest are either axial or transversal (bending). Only for very
high frequencies will radial shell modes be excited. Therefore, modelling the pipe
with three-dimensional shell elements complicates the calculations in many orders
of magnitude, and the accuracy gained is in no comparison to the extra cost of
modelling and solving.

Today the beam equations are solved almost exclusively with the finite element
method, both in frequency and time-domain, and many commercial piping programs
for structural calculations exist.

2.4 The Finite Element Method, FEM

The Finite Element Method, (FEM), was first developed by aircraft engineers in
the late forties to calculate stresses in complex geometries. The idea was to di-
vide a complex unsolvable geometry into simple pieces for which solutions could be
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found. An approximation to the complex structure was then built with these sim-
ple elements. Later on, mathematical development combined with the increase in
computer power has developed the method, and today FEM is considered a general
discretization procedure for solving partial differential equations.

In structural mechanics some sort of finite element methods are the only methods
used in calculations today (with only a few specific exceptions). FEM is used for all
types of calculations, (ordinary stress/strain calculations, transient, oscillatory and
nonlinear plasticity calculations).

Calculation of transient and dynamic hydraulics in piping using FEM is rare
and not well known in the hydraulic communities. However, a substantial amount
of work has been done in developing general two- and three-dimensional fluid codes
using FEM as the discretization technique, and several commercial programs exist.

All in all, the main characteristic of the Finite Element Method is that it is a
general discretization technique. It can be derived from a pure mathematical point
of view through variational approximation. It is intuitively understandable (at least
for mechanical analysis). From a practical point of view its best characteristics is
that it is extremely consistent in all its aspects and that it seems ”as made for”
object oriented programming, which truly makes it a strong analysis tool made for
the future.

2.5 Fluid Structure Interaction, FSI

As stated on page 3, fluid structure interaction is the study of the dynamic in-
teractive behaviour of fluid and structure. This may be in a ship-sea, airplane-air
connection, or as in this case, pipe and internal fluid. In many cases this interac-
tion can be disregarded because it is small compared to other parameters. However
the trend with thinner materials, higher velocities and pressures, seems to continue
due to the economical benefits this has. A problem this trend causes is of course
that fluid structure interaction which could be disregarded before, suddenly has
large consequences. This, together with the increase in computer power making the
interactive equations solvable, make F'SI an important branch of research.
In piping systems at least three different forms of FSI can be found:

1. FSI due to external fluid, (oil risers, sea pipes etc.).

2. FSI due to internal liquids, (Poisson and junction coupling, oil hydraulics and
most piping conveying liquids).

3. FSI due to unsteady internal shear layers, (acoustics, gases and liquids).

4. Any combination of the former three.

The work in this thesis deals with FSI due to internal liquids.
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2.6 Frequency-domain

To assert the general dynamic behaviour of a system one has to do a frequency-
domain analysis. With this analysis one will find the eigenvalues of the system
(resonant-frequencies with corresponding eigenvectors), and one can do a frequency
response analysis.

With the eigenvalues one will find which frequencies excite the system and where
in the system the maximum amplitudes will occur. Relating to piping systems, this
information is of significant value when the position of the supports are decided.

Frequency response is used to find the amplitudes at various frequencies when
the system is disturbed by a steady oscillatory disturbance (vibrations generated
from pumps, motors etc.). This information is very valuable in the design phase of
a piping system, and in finding the cause of - and a solution to - vibration and noise
problems. Frequency response can also be used in a fatigue analysis to find where
the system is most likely to break. Other important uses for frequency response
is for control applications in oil hydraulics or hydro power, and in general acoustic
analysis.

2.7 Previous work

FSI in piping systems is the marriage of two very distinct disciplines. This distinction
is clearly reflected in most of the available literature where hydraulics and mechanics
approaches the problem from different angles and with different solution strategies.

Two review papers have been written in the last ten years, [66, Wiggert] and
[53, Tijsseling]. Both papers are excellent starting points for further research. The
latter, being fully up-to-date at the time of writing, has a very comprehensive list
of references as well as an excellent introduction to FSI in piping systems given in a
historical perspective. The emphasis of the latter review is on time-domain analysis.
An excellent introduction can also be found in [67, Wiggert].

This thesis deals mainly with FSI in the frequency-domain. The emphasis of the
following review is therefore on work done in the frequency-domain, and the general
history of FSI in piping is only briefly presented. This review is therefore by no
means complete with respect to including all the work previously done, but is aimed
at giving a historical look at the development seen in relation to the work in this
thesis.

2.7.1 Poisson coupling

When the pressure in a pipe rises, the pipe walls obtain tangential stress. Through
the Poisson ratio, v, these tangential stresses causes axial stresses trying to shorten
the pipe. Axial stresses also causes the pipe to contract in radial direction, thus
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decreasing the internal volume. For a stationary case the forces will rest at a point
of equilibrium. In a transient or oscillatory case, these effects will cause changes
to both the fluid variables and the structural variables because stress waves and
pressure waves travel with different speeds. A pressure wave traveling at the speed
of sound in fluid, causes tangential stress in the pipe wall. This tangential stress
is the cause of an axial stress wave traveling at the speed of sound of the pipe
material, thus, much faster than the pressure wave. Following this axial stress wave
is another pressure wave (precursor wave). This pressure wave is caused by the
radial contraction. The Poisson number is a key factor to this dynamic behaviour,
and the name of this coupling is therefore the Poisson coupling.

The development of the four-equation model which incorporate the Poisson cou-
pling used in calculations today can be traced as far back as to the 19th century.
In 1878 Korteweg presented equations for the velocity of sound of fluid in an elastic

pipe:
0 — |2 (1 2EY

where K is bulk modulus of the fluid, p; is fluid density, D is pipe diameter, e is
pipe wall thickness and E' is Young’s modulus of the pipe. He also pointed out that
the Poisson ratio is of importance when including axial pipe stresses.

In 1956 Skalak [41] presented the equations (four-equation model) that, with mi-
nor modifications, are used today. These equations permit precursor waves without
the dispersion effects found in earlier models, and are valid when the fluid wave
length is long compared to the diameter. The equations are longitudinal structural
equation of motion for the pipe coupled with the waterhammer equations through
the Poisson effect. In this thesis the Skalak model is used.

2.7.2 Junction coupling

Any discontinuities in a piping system (bends, T-connections etc.) that have some
degree of freedom, will produce mutually dependent forces on the structure and the
liquid when the pressure changes, or the pipe moves. This kind of coupling is called
junction coupling.

The coupling consists of two parts:

1. Pressure forces acting on the structure, (pressure-based junction coupling).

2. Structural movement causing changes to the fluid continuity, (continuity-based
junction coupling).

Both effects must be included to obtain interaction between fluid and structure.
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2.7.3 General research

During the last 10 to 15 years the main subject of research has been the development
of reliable and practical software for calculation of FSI. Along with these develop-
ments, some experimental research has also been done. In FSI in piping systems, as
in all other branches of research, experimental work is much more expensive, both
in labour and actual cost than software development. Literature containing experi-
ments is therefore somewhat sparse compared to literature containing analytical and
numerical research. In frequency-domain research, the experiments done in 1969 by
Davidson and Smith [7], are still used to validate software.

Different approaches are used in making FSI software. Commercial structural
and fluid programs have existed for some time, so one approach is to try to combine
this software in some kind of iteration procedure by making interface programs or
by modifying existing code. Although this looks like a fast and easy approach, the
result is an inconsistent program that is slow, hard to use and often manual user
intervention is needed (see for instance [53, Tijsseling]). Modifying existing FEM
piping software has been a popular approach, and although the junction coupling
can be modelled correctly, the inclusion of Poisson coupling is very difficult (often
skipped). More important, the inclusion of hydraulic components (pumps, turbines)
is literally impossible.

Gibert et al. [15] used an existing FEM software to compute acoustics and
vibrations in piping systems. In the computations, the one-dimensional beam model
was used. The interaction was modelled as locally acoustical source term acting
from fluid to structure. Emphasis was put on transfer function modelling of these
source terms coming from fluid turbulence because of discontinuities (bends, etc.).
Poisson coupling was not included and the only FSI coupling was junction coupling.
Calculations were compared with experiments showing accelerations. Later Axisa
and Gibert [1] presents a more thorough description of their method along with
some calculations including nonlinear effects (time-domain). To obtain symmetric
matrices a variable 7 is used. The definition of 7 is given by the relation: © = p,
where p is the plane acoustic pressure. The physical representation of 7 is the
velocity potential.

Schwirian and Karabin [40] modelled the fluid as spar elements to be able to
use existing FEM structural programs, no Poisson coupling was modelled, only
coupling from pressure to structural displacement at junctions (one way junction
coupling). Later Schwirian [38] developed this approach and also proposed a multi-
dimensional fluid element with a quasi-Poisson coupling incorporated, as well as
cavitation. Cavitation was modelled as spring/mass? elements with a GAP which

2The use of spring/mass elements is the same as ”lumping” the matrices (concentrating the
mass and stiffness at node points), thus greatly reducing the accuracy. A GAP is component that
opens (looses contact) when the tensile stress reaches a pre-defined value.
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opens when the pressure drops below the cavitation pressure.

Everstine [12] used a similar model as Schwirian and Karabin, and he also pointed
out and included the important flexibility factors at bends. In his paper he included
a three-dimensional acoustic FSI calculation (shell - brick) for comparison with the
beam solution. In the beam solution the unknown nodal values were fluid displace-
ment, not fluid pressure, and no Poisson coupling was included. The calculations
were compared with the experiments of Davidson and Smith [7]. Everstine found
that a beam solution with the appropriate flexibility factors was adequate for fre-
quencies up to 63% of the first radial fluid-filled pipe mode, thus far beyond the
frequencies of interest in general piping systems. Everstine concluded that the very
time consuming and expensive three-dimensional approach could be used for verifi-
cation of simpler models and for calculations of small details where accuracy was of
importance. Commercial three-dimensional acoustic FSI programs are now available
(i.e. ANSYS).

An interesting (time-domain) approach was proposed by Xianglin et al. [72].
The four-equation model was solved with FEM, both for the fluid and for the struc-
ture, and numerical examples for one straight pipe were given. The fluid elements
were discretized with first order polynomials for the pressure and third order Her-
mite polynomials for the velocity, hence producing a total of six degrees of freedom
for each fluid element. The structure was discretized in standard FEM manner.
Iteration was done at each time step to couple the fluid and structure similar to the
MOC-FEM method used in FLUSTRIN [29].

During the 1980’s the work at Michigan State University (for instance [17] [68]
[69] [30]) has been of great importance in the development and understanding of FSI
in piping systems. Through numerous publications in journals and conferences this
field of research has been introduced to a broad audience. The research has been
both in the time- and the frequency-domain. In the frequency-domain, Hatfield et
al. [17] presented a component synthesis method. In this method the structure
was represented with a limited number of eigenvalues computed with available FEM
software. Only junction coupling was included. In 1987 and 1990 Lesmez et al.
[30] presented a transfer matrix solution (TMM) to the four-equation model [41,
Skalak]. In this solution both Poisson and junction coupling was incorporated.
Solving of the same equations has been investigated in time-domain with the method
of characteristics by Wiggert et al. [69]. Both the time and frequency-domain
computations were validated with data from experiments.

The transfer matrix approach has later been adopted by many investigators.
Charley and Caignaert [6] used the TMM with the flow, ¢, as the parameter, not
the fluid displacement originally presented in Lesmez et al. [30]. Gaji¢ et al. [14] in-
cluded steady state friction. de Jong [8] presented a considerable amount of valuable
experimental data along with his calculations.

Although the research at the university of Dundee in the UK and at Delft
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Hydraulics in The Netherlands mainly concerns time-domain analysis, the large
amounts of publications from these institutes have been very important to this
field of research. Among developments of software, FLUSTRIN [29], and numerical
schemes, the most important contribution in a historical scientific context has been
the validation of the four-equation model through large scale and precisely executed
experiments (see for example [52, Tijsseling]). It is safe to say that the acceptance
of the four-equation model as the appropriate model describing the fluid structure
interaction in piping systems, is largely due to the work done at these institutes [55]
[19] [57] together with the work at Michigan State University.

An approach somewhere in between TMM and FEM was presented by Xinxin
and Nielsen [74]. This method is based on the Structure Matrix Method (SMM)
adopted for use in hydro power simulations by Brekke [2]. It is similar to TMM
because the wave equations are solved analytically in frequency-domain for a pipe
element. Instead of making a transfer matrix connecting all the variables from
one point on the pipe to another point, the pressure and all the displacements are
set on the left hand side while the flow and forces are set on the right hand side
(Au = f), where u is the vector of pressures and displacement while f is the vector
of flow and forces. The method is similar to FEM [77, Zienkiewicz] in the way the
global matrices are built, and in the way the variables are grouped. In fact, some
elements can be interchanged between the two methods (FEM and SMM). The
method was used with the four-equation model on a numerical example[74, Xinxin],
however no junction coupling was included. Originally the idea was to develop this
method further. The reason for choosing FEM is mainly its flexibility concerning
discretization compared with a quasi-analytical method. This flexibility is seen when
including different mathematical beam models (Euler-Bernoulli/Timoshenko etc.),
and especially when including piping support and surrounding structure.

Svingen [3] [45] presented a FEM solution similar to Schwirian and Karabin [40],
but with the inclusion of Poisson coupling (four-equation model). The use of velocity
potential or fluid displacement as the unknown to obtain symmetric matrices was
discarded, and instead the fluid pressure was used as the unknown and the fluid flow
as the known variables, similar to the SMM. The computations were validated with
the experiments by Davidson and Smith [7]. An experimental piping system for FSI
experiments is given in Svingen [49].
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2.8 Objective

The research presented in this thesis is aimed at the development of frequency-
domain calculation of piping systems including the effect of fluid structure interac-
tion. Objectives can be categorized as follows:

e Develope a computer program (prototype) for FSI in piping systems, capable
of:

— Computing frequency response and eigenvalues.

— Analyzing complete systems including branches and loops without any
complications.

— Including components such as turbines, valves, pumps etc. as described
in Brekke [2].

— Including supports and surrounding structure easily and effectively.

e Construct an experimental rig for frequency-domain FSI analysis of piping
systems:

— To verify and improve numerical schemes.

— Assure that the FSI couplings involved are dominating the structural and
fluid responses.

— Oscillating valve to make sinusoidal disturbances.

e A part of the research program: EFFEN-PRODUKSJON, (Effektiv Energisys-
tem) by Norwegian Electricity Federation (EnFO) and The Research Council
of Norway.

e A part of the continuing research on non-stationary flow phenomena at the
Water Power Laboratory at NTNU.

2.9 Achievements

Having the objectives, and the more general points given on page 4 in mind, the main
achievement is the development of a general purpose computer program (prototype)
for frequency-domain FSI analysis of piping systems. The program was built from
scratch using object oriented C++ as the main programming language and using
existing FORTRAN subroutines for matrix solving. Currently the program can
analyze plane piping systems, but the extension to three dimensions is straight
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forward because all the fluid structure interaction modelling which complicates the
solution process is taken care of for two dimensions.

The main difference between the approach presented here and approaches found
in earlier literature is the choice of fluid variables and their position in the matrix
system.

The use of an existing structural FEM program for general piping analysis pro-
duces some major problems. When using structural programs for fluid equations it
is necessary to convert the fluid variables from an Eulerian to a Lagrangian frame of
reference, Schwirian [39]. This can be done by using the fluid displacement, or the ve-
locity potential and pressure. Both of these approaches leads to symmetric matrices
resulting in computational advantages especially for three-dimensional calculations.
Using fluid displacement has two disadvantages. The number of unknowns increases
(especially for three-dimensional calculations) and nonphysical rotational modes of
fluid vibrations are made. Using the velocity potential and pressure produces no
such rotational modes, but leads to a fictitious damped system.

Sandberg [36] presented a method using the pressure and the fluid displacement
potential as variables, where the displacement potential v is defined as: uy = Vo
where uy is the fluid displacement vector. This approach produces symmetric ma-
trices without the fictitious damping found in the method using velocity potential
and pressure. From a pure fluid-structure point of view this is all fine. However,
when one also wants to include hydraulic piping components such as valves, pumps
and orifices, problems arises. For one-dimensional calculations, fluid displacement
could be used with some modifications to the equations describing other hydraulic
components, but additional problems would arise when loops and branches are in-
cluded, as described in the next paragraph. Using either velocity potential /pressure
or displacement potential /pressure causes the inclusion of hydraulic components to
be literally impossible. Since the objective is in the making of a general-purpose
computer program, the choice of the fluid variables in this thesis is the flow, (), and
pressure, P.

When modelling piping systems with branches and loops, the position the vari-
ables have in the matrix equations are of importance. Using the Transfer Matrix
Method [71, Wylie and Streeter| all variables (Q, P, U, F') in one place are con-
nected to another place using a "transfer matrix”. For straight pipes this works
fine, but problems arise in systems with loops and branches where special consider-
ations have to be made to assure continuity [8, de Jong]. Also when using existing
FEM software where nodal displacement or velocity potential are the dependent
variables, special considerations have to be made to assure continuity at branches.
In the structure matrix method developed by Brekke [2], this problem is solved in
an elegant manner. By using the pressure as the dependent variable and the flow
as the free variable with positive direction of flow out of the pipe at each end, the
continuity at branches is assured by setting the flow equal to zero at all places except
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where flow leaves or enters the system. The matrix equations (hydraulic) will have
the form:

AwP=Q

where A is the system matrix, P is the pressure vector and Q is the flow vector.
This approach is adopted here with the extra advantage of being able to use literally
all the hydraulic piping components developed for the structure matrix method [2,
Brekke| [73, Xinxin]. The use of finite elements as the method of discretization also
assures that including piping supports and surrounding structure is an easy task
[33, Petyt].

Computations made with the program are compared with results from the ex-
periments done with a piping system designed for FSI experiments. Large fluid
structure effects are both measured and correctly predicted by the program. The
experimental rig is made with long, thin walled, pipes to assure that FSI effects
(Poisson and junction) are dominating the dynamic responses. A special valve that
opens and closes with a sine function is designed to excite the system.

When using FEM for structural calculations, a common way of modelling the
frequency-dependent damping is the use of proportional damping, often called Ray-
leigh damping [33, Petyt]. The frequency-dependent damping matrix is proportional
to the stiffness matrix by a specified constant. In structural mechanics this damping
constant can be found in text books for different structures and materials®. While
using this kind of damping model for the pipe structure, it is obviously attractive
to also use it for the fluid because it would simplify the calculations. This is done
in this thesis, and it is shown that the frequency dependence is good compared
with experiments and that it is extremely efficient. A physical and mathematical
interpretation is also proposed. The mass proportional part of the Rayleigh damping
matrix is shown to be the linearized stationary damping term given in the Allievi
equations. This term evolves automatically through the discretization.

An analytical time-domain solution to the linearized waterhammer equations
with frequency-dependent friction is found. The solution is found by separation of
variables, and can be used to show the properties of the specific damping model,
and for verification of computer codes.

Time-domain calculations of the waterhammer equations with nonlinear steady-
state friction are usually done with the method of characteristics. A special dis-
cretization technique, making it possible also to include the proposed frequency-
dependent /transient friction model, is presented along with some calculations.

Extensions to modal analysis and stationary analysis are also sub-parts of this
thesis.

30Often the constant is not given directly, but rather as modal damping ratios.
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Chapter 3

The extended waterhammer
equations

In this chapter the extended waterhammer equations are derived. They are the
equations that include the coupling between hydraulics and structural pipe move-
ment in axial direction because of the Poisson effect, hence they are one-dimensional
[41, Skalak]. The goal is to reach the so called four-equation model used in the nu-
merical program. Assumptions and simplifications are stated through the process,
and the less obvious ones are treated in appendices. Bending and torsion causes no
direct fluid structure interaction and are therefore not derived herein (they can be
found in text books, i.e. [35, Raol).

Deriving these equations can be done in many different ways [41, Skalak] [52,
Tijsseling]. The derivation herein is done to obtain equations suitable for the Finite
Element Method in particular and oscillation-calculations in general.

17
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3.1 Fluid

The starting point for the fluid equations is two-dimensional Navier-Stoke’s equa-
tions in cylindrical coordinates. (Note- axial coordinate is x, see Figure 3.1).

e Continuity

o Ty Ty TPy T ) =0 (3-1)
e Axial momentum
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These equations are general in the sense that the only simplification is the assump-

tion of symmetry and isothermal flow. x and g are the bulk viscosity and the
dynamic viscosity.

Gases are highly compressible as well as having negligible density compared
with the pipe material. This makes internal gas flow somewhat uninteresting
in FSI analysis, thus shortening the analysis in this thesis to liquids only.
However, in recent years several cases of FSI in natural gas pipes have been
reported where severe structural vibrations due to resonance have occurred[16,
Graf and Ziadal][10, Durgin and Graf]. The FSI in these cases are caused
mainly by flow-instabilities in shear layers and due to geometrical changes
inside the pipe, thus Poisson and junction coupling is not important.
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vy

Figure 3.1: Fluid element in axis-symetric cylindrical coordinates.

By assuming very low compressibility the variation of density with respect to

pressure is approximated by a constant value.

9y _pr_

1
K c? (3.4)
In this chapter all the viscosity terms are neglected for the sake of clarity (see
Chapter 5 for a discussion). By assuming very low Mach numbers (M? < 1) all the
convective terms are neglected, see Appendix A. Actually this can be defended only
for the continuity equation, (Equation 3.1) and not for the momentum equations
(Equation 3.2 and Equation 3.3) at this stage since the equations still are two-
dimensional. In two and three dimensions the convective terms in the momentum
equations usually play a major part of the flow picture [65, White]. However, one-
dimensionality will soon be assumed. Since the interest is taken in oscillations about
a stationary value all the external body forces are neglected. This reduces Equation

3.1, Equation 3.2 and Equation 3.3 to:

10p Ov, 10 B
?E + oy + ;E (7”1)7) =0 (3.5)
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ov, Op
Py 5% o 0 (3.7)

Equation 3.5 and Equation 3.6 are made one-dimensional by averaging the pressure
and flow across the cross section. This is done by multiplying with 27r, integrating
with respect to r from 0 to R, and dividing by 7 R?.

1oP oV 2
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Where the average pressure and velocity are
1 R

= i 2mrvLdr (3.10)
R

= i 2mrpdr (3.11)

The next assumption is based on the fact that the characteristic fluid length scale,
Ly, compared with the diameter, Dy, in piping systems is large (Lo/Dy > 1).
With this assumption the radial inertia is very small compared to the axial inertia
and can therefore be neglected with the constraint that the wavelength is long (long
wavelength approximation). Proof and dimensional analysis is found in Appendix B.
Everstine [12] found by comparing a beam model and a three-dimensional acoustic
(brick-shell) model that this approximation is valid for frequencies up to 63% of the
first radial fluid-filled pipe frequency. (Equation 3.7 will then become % = 0 when
the radial inertia is neglected, which only states that the pressure is constant in a
cross section).

On the pipe wall the radial fluid velocity must be equal to the radial pipe velocity:

Ur|r:R = urlr:R (312)

Using Equation 3.12 in Equation 3.8, together with Equation 3.9 gives one-dimensional
equations, except for the radial pipe velocity term.

1 OP 8_V 2

Kot "o T Rlrer=0 (313)
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Prar T oz =0 (3.14)

Hooke’s law in cylindrical coordinates is expressed as:

€y = “7 (3.15)
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€p = % (0p —v(0y +0,)) (3.16)

Combining Equation 3.13, Equation 3.15 and Equation 3.16:

ov. 10P 20
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It is already assumed and argued that radial inertia is unimportant (see Appendix
B), therefore the radial and tangential stress terms in Equation 3.17 can be ap-
proximated by the quasi-stationary relations for a thin-walled cylinder found in text
books [21, Irgens| assuming e < R.

R
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Equation 3.17 now becomes
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Equation 3.18 is now one-dimensional, hence the stress term o, can be substituted
by E %. The fluid equations as used in the discretization are:
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The term (% + %%) is used to approximate the wave propagation velocity (when

multiplied by p;), c? = % (1 + w%)_l. When the pipe is free to move axially the
constant 1 is set to 1, and if the pipe cannot move axially, ¢ = (1 — v?), [71, Wylie
and Streeter]. Anyhow, the difference in calculated wave speed for the experimental
rig using the two alternatives is 1.5%.
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F :

Figure 3.2: Thin walled pipe element of length dx

3.2 Pipe

The pipe equations are derived in a much simpler way by making the assumptions
of one-dimensionality and thin walls. Considering a pipe element of length dz and
an internal pressure, P, as given in Figure 3.2, the following force-stress relation is
valid [35, Rao], [21, Irgens].

ou R
oo+ Aw—P (3.21)

The pressure term in this equation acting in the x direction is due to the axial tensile
stress in the pipe wall because of the Poisson effect. The equation of motion for this
element when f(z,t) is an external force per unit length:

O
ot?

By using the relation dF' = (0F/0x)dx and Equation 3.21, the equation of motion
becomes:

F =0,,A,+ 0,4, = EA,

(F+dF)+ fdx — F = p,Apdx (3.22)
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3.3 Torsion and bending

For the sake of completeness the equations describing torsion and bending are in-
cluded. These equations can be found in most text books (i.e. [33, Petyt] [35, Rao]),
thus no derivation is presented here.

Torsional vibrations for a uniform pipe:

o 9%

where fr(z,t) is the external torque per unit length.
Equations for bending vibrations of pipes can be expressed in many different
forms depending on the nature of the pipe and the forces acting on them. In piping
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analysis where the pipes can be described by long thin beams, the Euler-Bernoulli
theory is usually used. The weight of the fluid inside must also be included.
0w 0w
BLo S+ (0,4 + p,Ag) 5 = (1) (3.25)
In Wiggert [69] and Tijsseling [52] the Timoshenko beam theory is used. The reason
for this is that when solving with MOC (time-domain), one needs to have hyperbolic
equations (the Euler-Bernoulli equations is not). The Timoshenko beam theory
incorporates shear deformation and rotary inertia effects and is valid for slender
beams also at high frequencies:
o'w 0w E 0w
Bz + (PpAp + pfAf)W — pplp(1 — m)m

(3.26)
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where the shear modulus G = E/2(1+v), and k is the Timoshenko shear coefficient.
(For thin walled cylinders k ~ 2(1 + v)/(4 + 3v) [52, Tijsseling]). It should also be
noted that using Timoshenko theory for bending while neglecting radial inertia in the
axial equations is somewhat dubious. However, the frequencies excited in a piping
system are so low compared to the radial frequencies that literally no differences are
seen between the two models. From a practical point of view when using FEM, the
only difference between Timoshenko and Euler Bernoulli is some extra constants in
the mass and stiffness matrix, [33, Petyt].

3.4 Poisson coupling

The Poisson coupling is incorporated in Equation 3.23 and Equation 3.19. Looking
at these equations one can see that the continuity equation, (Equation 3.19) is
modified with a contraction factor. Physically this is the same effect one gets when
stretching a hose and the cross section shrinks. (Pumps exist that use this principle).
The pressure term in Equation 3.23 works as a distributed force trying to shrink the
pipe in the axial direction when the pressure increases. The name Poisson coupling
is rather obvious, thus setting the Poisson number to zero uncouples the equations.
The Poisson coupling is a two-way (mutual working) coupling.

In Figure 3.3 the propagating pressure wave and the axial stress wave can be
seen. The pressure widens the pipe in radial direction, causing an axial stress wave
due to the contraction factor. This stress wave causes the pipe to shrink in radial
direction, and this shrinking is the cause of the so-called precursor wave (pressure
wave following the axial stress wave). The existence of these precursor waves have
been known for almost a century, but was seen for the first time in 1969 by Thorley
[51]
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Figure 3.3: A view of the Poisson coupling, exaggerated.

3.5 Junction coupling

The junction coupling is modelled in the boundary conditions, where a junction is
a place in the piping system where the flow changes direction or the cross sectional
area changes(bend, T-connections etc.). The junction coupling works in two different
ways:

1. Hydraulic pressure causes a force acting on the pipe (see Figure 3.4).

2. Structural displacement at junctions causes a change of volume in the pipe
(see Figure 3.5).

Bending, axial and torsional movements are also coupled at junctions. These
couplings exist whether or not the pipe is filled with fluid, and is taken care of in
the FEM assembly through the transformation matrix. It is therefore not a coupling
from a FSI point of view.
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Figure 3.4: Junction coupling (pressure force)
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Figure 3.5: Junction coupling (continuity)
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3.6 Summary

The extended waterhammer equations (four-equation model) for FSI in piping sys-
tems have been derived. An easy to grasp and correct picture is that the piping
structure is described by (hollow) beams which can obtain bending, torsion and
axial stress. The fluid is described by one-dimensional wave equations (Allievi’s
equations) tied to the pipes in lateral direction, but free to move in the axial direc-
tion. The coupling between fluid and structure is twofold:

e Pressure causing axial stress, and axial stress causing changes to the continuity
relation (Poisson coupling).

e Pressure-forces and continuity at junctions (junction coupling).

The equations are valid for frequencies up to about 63% of the first radial fluid
filled resonance frequency, hence they can be used for most practical piping layout
applications.

In deriving the equations all friction forces were neglected. A discussion of fric-
tion models can be found in Chapter 5.



Chapter 4

FEM discretization

4.1 Basics

When using the finite element method a complicated continuum is divided into sev-
eral manageable pieces called elements. These elements are connected to each other
only at specified nodes at the boundary of each element. Within the elements sev-
eral additional nodes may be specified. The functional value within the element is
approximated as polynomial functions over the nodes. A first order one-dimensional
element has two linear polynomials while a second order element has three square
polynomials. Each of these polynomials are linearly independent, thus the polyno-
mials for an n’th order one-dimensional element spans out an (n + 1)-dimensional
space.

Looking at the pressure along a pipe the functional value in one element can be
approximated as:

p(a) ~ Y pini(a) (4.)

where m is the number of nodes. Setting m = 2 gives the polynomial approximation
for a first order element:
x x
- = — 4.2
Dt (s (42)
where p; and p, are the values at the nodes and n;(x) and ny(x) are the polynomials.
In matrix (vector) form Equation 4.2 becomes:

(%) ] [ ” } =N'p (43)
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Taking the derivative of this equation with respect to x gives:
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In addition the following constraints must be applied to achieve linear independence:
ng(z) =0 if x not in element e
ni(z;) = 0ij

an(w) =1 forallzee

This is the basis for all finite element methods. Since the functional value is
approximated with polynomials it is obvious that the accuracy is increased with
increasing degree of the polynomial. It is also obvious that increased accuracy is
obtained by increasing the number of elements.

4.2 Fluid Structure Interaction

The particular discretization of the extended waterhammer equations (four-equation
model) as presented in this thesis has not been found elsewhere in available literature.
The FEM discretization is performed in the time-domain to obtain generality. Later,
in Chapter 4.2.2, they are Laplace transformed to the frequency-domain as used in
the computer program. Some extensions of this discretization for time-domain and
stationary analysis of piping systems is given in Chapter 4.6.

4.2.1 Element equation

The starting point is Equation 3.19, Equation 3.20 and Equation 3.23. Taking the
derivative of Equation 3.19 with respect to ¢t and using Equation 3.20 after the
derivative is taken with respect to x, together with Equation 3.23:

0%u, 0%u,, vROH
—BAy o5 oy — Aeppg— - = fala ) (4.5)
OPH g 0°H Pu,
_ Jd 277 = 4.
9oz T o~ Vowor " (4.6)
where
1 2R
C?a = pf <? + ¢€_E) (47)

The pressure P, is substituted with the pressure head H. These equations are
equivalent with the so called four-equation model used for MOC, considering that
stationary friction is neglected (actually, neglecting the stationary friction term make
them valid only for dynamic calculations).
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The equations are multiplied with an arbitrary weighting function, 6, and inte-
grated in z direction from point a to point b:

b 5%, b vR o0H
_EAp/a 6de+ppAp/a 6umdx—Appfg? 6%d$
X (4.8)
:/ 8 fz(x, t)dx
b 82H g b b aum
—g/aéax2 3/(1 OHdx — 2v ’ 6axda::O (4.9)
Applying integration by parts:
96 Ou, b vR oH

EA, 8 o dr + p,A /a dtipdr — Apprg— > (5%@:

(4.10)

b
/a §f.(z,t)dx + EA, [5?;} a

06 OH g b iy OH
g %%daz f/ 6de—2y/a 6(93: dr =g PEL (4.11)

The last terms in Equation 4.10 and Equation 4.11 are the boundary conditions.

The boundary condition F'A, [(5 B“} in Equation 4.10 can be included in the external

force fab 8 fx(x, t)dzx, so this term is disregarded [13, Fiskvatn]'.

The directions of the variables are set as shown in Figure 4.1. Note, the positive
direction of flow is out of the element and rising pressure is positive. The weighting
function is substituted with the polynomial vector, N, and the variables (pressure
and displacement) are discretized as described in the previous chapter (Chapter 4.1).

H(z) ~ N"H wu(z) ~N"u

This particular form of finite element formulation is called Galerkin formulation [77,
Zienkiewicz|. Equation 4.12 and Equation 4.13 are therefore the Galerkin discretized
equations:

gA; N NIdx H+—/ NNdeH—ZVAf/ NNZdrii, =

(4.12)
&

IBoth of these relations are sufficient boundary conditions in a mathematical sense. The dif-
ference between them is that the last term (integral relation), is consistent. This means that only
node forces can be applied with the first relation, while distributed forces can be applied with the
last. (i e. the pressure forces in equation 4.10).

|--0
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ngAfaT H fxo) HbT pgHA,
fax fbx
> q >
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Figure 4.1: Definition of direction of the variables for one element

b b
EA, / N,NZdzu, + p,A, / NN dzii,
(4.13)
VR b b
- ppfg—/ NNfdxH:/ Nf.(x,t)dx
€ a a

These two equations have the Poisson coupling incorporated. The right hand side
of Equation 4.12 is obtained as follows:

oH 1" OH 1" OH OH
o5 o] - (%) - (ve), e
Using the relation from Equation 3.20 (%—Ij = —A%g%—?) and the constraints for the
polynomial functions (n;(z;) = 6ij), Equation 4.14 reduces to
oH" 1[o0]/0Q 1[1]/0Q
N = o) 4 e 4.1
el -l @b (F), e
Now the direction of flow as given in Figure 4.1 (Q, = —Q and @, = @) is applied:
oH1" 1 o 170
Ne—| =—— = | W 4.1
g[ aﬂfk Ay g_é Af[Qb} (410
ot

The boundary conditions in the form of the junction coupling also have to be
incorporated. From Chapter 3.5 the junction coupling is the pressure forces and
continuity at bends, T-connections etc.

The pressure forces are rather obvious, and are modelled as ”external forces”
acting on the structure. Looking at Figure 4.2 the forces acting on the pipe element
when the pipe is free to move in z-direction but restricted in y-direction are:

fra = _pngfaHa ;o = /)ngfbe (4-17)
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HA, HA
pgra, H, A, pgHA,

]

Figure 4.2: Pressure forces at junctions for an element with junction in both ends
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Figure 4.3: Piping system with 3 elements and 4 nodes showing continuity at nodes.

These forces are added to the external forces whenever the cross-sectional area
changes. Since they are functions of the pressure they are put in the appropriate
place on the left hand side of the equality sign.

The continuity at junctions is not that obvious. This is because of the way the
matrices are constructed and the direction and choice of the variables. Considering
the system in Figure 4.3 as a pure hydraulic system (no FSI), then, since the nodes
are points (control volume equals zero) and the direction of the flow is out of each
element, the following matrix equation describing the system must be valid:

?1 H, Q1
H, H, o | Q2+ Q2
M| - + K —Z =
I:[g Hj O | Qa3 + Q33
H, H, Q34
(4.18)
Qu Qn
o | Qu—Qe | _ _s| O
1 Qaz — Qs3 ot 0
Q34 Q34

where M and K are general 4x4 matrices describing the hydraulic system. The

2This matrix equation can be obtained from equation 4.12 by setting the Poisson number to

zero.
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Uy
—

— Q3|
!
0 ©
|4

Figure 4.4: Piping system with 3 elements and 4 nodes. Constrained to move at
node 1 and 4.

subscript ();; means "flow at element number %, node number j” and Qij = —Q;j
similar to Equation 4.16 (Q” = —(;; when on the left node of the element, positive
direction of flow is in negative z-direction).

Now FSI is included, which means that the relation in Figure 3.5 must be added
to the continuity relation on the right hand side of Equation 4.18. From Figure 3.5
and Figure 4.4 the continuity at junction 2 and 3 will be:

(Q12 — Af12tt12) — (Qa — Appoting) = 0= Q12 — Qa2 = Afpiatiig — Apaating

(Qa23 — Ajastisg) — (Q33 — Apsgtizg) = 0 = Qa3 — Q33 = Ajfostiog — Apsatiss
Inserting these relations into the right hand side of Equation 4.18 gives:

Qu Qn
0| Que—Qx | _ O | Apotug — Aptieg
Ot | Qoz— Qa3 | Ot | Apostioy — Apastizz |
Q3 Q34
(4.19)
—Q1 T rearranging —Qn
— Ajpigiing + Apggiing Ay terms t0:t>he left side 0
—Agaliog + Apssiiss 0
—Q34 i —Q34

The parts of the continuity relations that are functions of the displacements are set
on the left hand side. The terms of % must be transferred to the left hand side by
setting the term with first index equal to 1 into the appropriate place of the first
element and so on. For example, the term —Ajsii12 becomes a Afjy term at the
place in the mass matrix where it is multiplied with ;2. (see Equation 4.22 and
Equation 4.25). Doing this also assures that the flow vector has zeroes everywhere
except at nodes where flow enters or leaves the system.
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Figure 4.5: T connection, free to move only at node 2.

To show that this approach also is valid for branches and loops, consider the
T-connection in Figure 4.5. The continuity at node 2 is described by:

(Q12 — Afi2t12) — (QQQ — Afaoting) — (Q32 — Ajgotizo) =0

Q12 — Q2 — Q32 = Ap12t1a — Apooting — Afsatize

The hydraulic equations describing this system are:

]:—:Il H1
H, Hy |
M H3 +K | =
H4 H4
(4.20)
Qn Qu
o | Q2+ Qn+ Qs _ o | Quz—Qxn—Qn
ot Q23 ot Q23
Q34 Q34
thus the right hand side becomes:
Qu Qn
0| Quu—Qn—Qsn | _ 9 | Apzins — Apaatins — Apzotiz (4.21)
ot Q23 ot Q23 '
Q34 Q34

Moving all the u terms to the left side assures continuity at node 2.
With all the couplings in place the equation for one element becomes (Equation
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4.12 and Equation 4.13):

gAK 0 } { H ] N AégM’ C; { H ]
—Cl EApKI u 0 ppApM/ ij.
(4.22)
_[-Q
[, Nf(z,t)dx
where the sub-matrices are defined as:
b b
K = / N,NTde M = / NN”dx (4.23)
AppsgvR [ “Age 0
C, = % / NNldz — p;g | - Op_1 - (4.24)
a 0 . Afb
b A - 0
Cy = —2vA;f / NN!dr — | - Op1 - (4.25)
a 0 . —Ayp

e C; is the Poisson coupling from pressure to displacement and pressure based
junction coupling.

e C, is the Poisson coupling from displacement to pressure and the continuity
based junction coupling.

e The Poisson coupling is distributed, i.e. it works along the pipe while the
junction coupling only works at the nodes.

e The equation is valid also for branches and loops.

Note, different units in the matrices and the force vector.

4.2.2 Frequency-domain

The transformation to the frequency-domain is straightforward. Assuming harmonic
motion Equation 4.22 is Laplace transformed to the frequency-domain [47, Svingen]

as follows:
gAK' 0 ]lh}_ﬁ_SQ[%’;—qM’ C, [h}
u

-C EAK' u 0 ppAM/

(4.26)

B l Elgrf(x,w)dx }
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where s = jw and the sub-matrices are as defined in Equation 4.23 to Equation
4.25. This equation is used in the calculations of eigenvalues, eigenvectors and in
frequency response analysis. Damping is assumed as stiffness-proportional Rayleigh
damping [33, Petyt]. The damping matrix is therefore proportional to the first
matrix in Equation 4.26.

{gfglK | (])EAPK’ ] [ ; ] o [ oA 5, (EAPK'J H] .
o {ﬁ]:{]esﬁf@,w)dm} -

pp A, M

where (3, and 3, are the fluid and structural frequency-dependent damping constants
(see Chapter 5).

4.3 Complete element matrix

The equations in the previous chapter (Chapter 4.2.1) describe the fluid and the axial
structural motion as well as all the FSI couplings involved. The complete element
matrix must also include bending and torsion given by the equations in Chapter 3.3.
The Finite Element discretization of these equations is straight forward and similar
to the discretization of the extended waterhammer equations. The main difference
is in the discretization of bending where third-order Hermitian polynomials are used
[33]. The derivatives are then used as additional degrees of freedom. For bending
the rotational displacement 6,, = ag;’z is the extra degree of freedom (see Appendix
D). This means that a beam element with two nodes has four degrees of freedom.

The complete element matrix will be:

Ky h ﬁfo h
_Cl Ka Ugq + s BpKa Ugq
K, up Bpr up
K ut ﬁpKt ut
(4.28)
M; G h —sq

+32 M, Ugq _ fa:

M, up £,

M, uy my

For first order elements (linear elements) the element matrices will be of dimension
14 x 14 (see Figure 4.6). In a computer program it will be more practical to put all
the indexes belonging to the same node in line in the ”displacement” and ”force”
vector. The reason for this is to obtain consistence in the transformation presented
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Figure 4.6: Degrees of freedom for a first order element.

in the next chapter (Chapter 4.4). The modified element equation will be on the

form:
Ku+sDu + s°Mu = f (4.29)

where
T — [

u Uz, uyh Uz, 9:v17 €y17 9217 h17 Ug2, uy27 Uz2, 6:1?27 9y27 9227 hQ] (430)

fT = [fil?l? fyl; le7 miEl? myh mzh _SQI7 fil?27 fy27 f227 miEQ? my27 m227 _SQQ] (4‘31)

and the force, moment and torsion terms in Equation 4.31 are made from the con-
sistent load vector (integral formulation).
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Figure 4.7: Transformation of a pipe element.

4.4 Global system

Since the geometry for each element is described in local coordinates, each element
must be transformed to global coordinates (see Figure 4.7). This transformation is
done with a so-called transformation matrix relating the local and global coordinates
by cosine relations [33]. The transformation matrix is built using the vectors ¢} and
Uy from Figure 4.7 and an arbitrary vector 3 orienting the local yz-axes. The
transformation is defined such that:

u=RU and f=RF

where capital letters are the global coordinates. The indexes belonging to pressure-
pressure terms (R 7 and Ry414) are set to 1, and the rest of the corresponding row
and column are set to zero to assure that the pressure is not transformed. Using
this relation in Equation 4.29:

KRU+sDRU + s?MRU = RF (4.32)

Equation 4.32 is pre-multiplied by the inverse transformation which is equal to the
transposed matrix because of orthogonality:

RTKRU+sR'DRU + s?°R"MRU = R'RF = F (4.33)
thus giving the complete element matrix in global coordinates
K,U+sD,U + s°M,U = F (4.34)

It should be noted that this transformation also transforms the terms in the junction
and Poisson coupling to appropriate global coordinates.

Assembling the global system matrices is done using standard procedures. For
example, an element with global node numbers n; and ng, then columns 1 to 7 are
added into column (7n; — 6) to 7n;y in the global matrices and columns 8 to 14 are
added into columns (7ng — 6) to 7ny. The rows are added in an identical manner.
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4.5 Solving

4.5.1 Eigenvalues

Eigenvalues can be found in two ways

1. Setting the damping matrix and force vector to zero and solving the generalized
eigenvalue problem (K,U =w?M,U).

2. Setting only the force term to zero and do a determinant scan to find the
resonant frequencies.

The first method is the easiest and fastest one. Highly efficient and accurate
routines can be used [42, LAPACK], and both the eigenvalues (resonant frequencies)
and eigenvectors (shape functions) are solved simultaneously, (det [K,—w?*M,| = 0).

In some cases the damping matrix must be included. Valves, orifices etc. are all
components included in the damping matrix, as shown in Chapter 6. A determinant
scan is a method of obtaining the complex resonant-frequencies. According to linear
algebra the resonant-frequencies are defined when the determinant of the system
matriz is zero. The matrix Equation 4.34 have resonant-frequencies for w where:

det [Ky+jwD, — w?M,| =0 (4.35)

A scan is done by solving the determinant for a range of w, and marking the fre-
quencies where the determinant is zero or close to zero by a specified margin. When
a desired number of frequencies are found, the corresponding eigenvectors are com-
puted.

[K,+jwDy — w’M,] U =0 (4.36)

Since the trivial solution always is a solution, the eigenvectors are computed by
setting an arbitrary index in the U vector equal to 1. The rest of the U vector is
then found and each index will have relative values with respect to the one decided.
The complex resonance frequencies will have the form:

We =0+ jw

where o is the relative damping coefficient. This method can also be done in self-
excitation analysis as described in [3, Brekke and Svingen| and [44, Svingen]. If o
has a positive value, the system is unstable (self-excitation).

4.5.2 Frequency response

Frequency response calculations are done with the use of Equation 4.34, setting all
the numerical values in the force vector equal to zero except at the node where the
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excitation is set. The matrix system:
[K,+sD, +s°M,| U=F

is then solved for all frequencies of interest, and the results are the responses (am-
plitude and phase) for all nodes in the system. The excitation can for example
be a pulsating pressure or flow. More interesting calculations can be done when
other hydraulic components are included. In the calculations in Chapter 7.1 later in
the thesis, an oscillating valve is used. In Chapter 6, other piping components are
described.

4.6 Stationary and modal analysis

This chapter includes two additional extensions of the FEM discretization for use
in stationary and dynamic hydraulic analysis. The method for stationary analysis
have been presented by Brekke, but with some difference in deriving. Modal analysis
in time-domain with FEM using the variables ¢ and h have not been found in
available literature, and is verified in Chapter 5 with experiments and calculations
from literature.

4.6.1 Steady state solution

Stationary fluid analysis is obtained using the Allievi’s equations with a stationary
friction term. Exactly the same equations have been obtained by Professor Hermod
Brekke at NTNU using the structure matrix method [lecture notes]:

oh 10
oh 1 9q  _flal

oz ' gAat  2gDAZ! T (4.37)
dq gAOdh
ot g =0 (4.38)

The time dependent terms are discarded and the derivative of Equation 4.37 is taken
with respect to x.

h  flal 9q

Or?  29gDA20r (4.39)
dq
2 =0 (4.40)

The term |qo| is regarded as an iteration constant. Combining these equations:

o _

55 =0 (4.41)
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Applying Galerkin discretization in the same manner as presented in Chapter
4.2.1, and integrating from x =0 to z = L:

Sl q
29D A?

L

/ N,N7Zdzh = (4.42)
0

Since for stationary flows the pressure drop is linear along a pipe, dividing each

pipe into one element will give the exact results. After some algebra the following

element matrix, or rather pipe matrix, is obtained:

]l e

_ 2gDA?
[ laol

Assembling the system matrix is done in standard FEM manner, see for instance
[77]. Since the system is nonlinear an iteration procedure must be done. One possible
method of iteration is to guess the flow for each pipe. The pressures are calculated
using the global system matrix. With the element equations new and (hopefully)
more correct values of ¢ is calculated. These values are then set into the iteration
constant for a new calculation until some criteria are met.

where

4.6.2 Modal analysis

Modal analysis is a frequently used method in structural vibration analysis to cal-
culate responses of a continuous system subjected to an arbitrary forcing condition
[75]. In modal analysis the expansion theorem® is used to uncouple the coupled
equation of motion. The main advantage by this uncoupling is that a matrix system
reduces to a set of uncoupled ordinary second order differential equations that can
easily be solved without using matrix solvers. In fact the whole solution can be
made analytically when the function(s) on the right hand side is/are known.
Eigenvectors and eigenvalues for the undamped global system, Equation 4.44,

are found and set into a ® and A matrix respectively.
—w?*Mh + Kh = § (4.44)

Each column, n, of ® is the eigenvector corresponding to the eigenvalue at index
(n,n) in the diagonal eigenvalue (resonant frequency) matrix, A. The generalized
pressure is defined as:

h = ®&n (4.45)

3The expansion theorem is based on the orthogonality of eigenvectors.
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Setting Equation 4.45 into Equation 4.44 and pre-multiplying with the inverse
(transposed because of orthogonality) eigenvector matrix gives:

" Mdi) + PTKPn = ®7q (4.46)

Here the eigenvector matrix is scaled! so that the diagonal matrix ®”M® becomes
the identity matrix, I. The system then becomes:

Ii) + An = "¢ (4.47)

This system is now completely uncoupled, and can readily be solved. A very im-
portant fact is that Equation 4.47 is equivalent to Equation 4.44. The physical
pressure head is calculated using Equation 4.45. This function will be a sum of n
sine functions.

When Rayleigh damping (see Chapter 5) is used, the eigenvector-matrix which
diagonalizes the K and M matrices, also diagonalizes the C matrix due to propor-
tionality.

C=aM+ K

®'CP =@ [aM + K| ® = a®"MP + 'K
®TCP = ol + A (4.48)

The complete system with stationary and frequency-dependent friction then be-
comes:

Ii) + (oI + BA) N + An = @7 (4 + aq) (4.49)

Strictly speaking it is necessary that o and (3 have the same values for all different
pipes in the system to be able to uncouple all the equations, because the global
damping matrix ®7C® is only diagonal as long as it is a sum of the global M
and K matrices. How strict this requirement for similar o and 3 values for all the
different pipes in a system with respect to accuracy is, is not known. The time-
domain examples in Chapter 5 are calculated with modal analysis, and compared
with calculations made with MOC. It is obvious from the derivation of the method
that it is a method for analysis of "pure” dynamic systems (oscillations about a
steady state solution, or linear systems), and not well suited for general transient
calculations with non-linearities.

4.6.3 Direct solution with FSI

For general transient time-domain calculations of FSI in piping systems a direct
solution similar to the one presented in [72, Xianglin et al.] is probably preferable

4® is the orthonormal eigenvector matrix, and A is the eigenvalue matrix.
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compared to a somewhat restrictive modal analysis. Here an ordinary FEM dis-
cretization must be done on the extended waterhammer equations. The solution
process and discretization of Equation 4.50, Equation 4.51 and 4.52 can be done in
many ways. An iteration procedure is described in [72, Xianglin].

10 oOH rel| Cre
g , OH [ Qrel| Qre

- = 4.
4,0t Yor IR (4.50)
1dqg g¢gOH _ 0u,
A;or "ot owol (451)
82% 8211@ vROH fp Af |Qrel| Qrel
—E’Ap—ax2 + ppApW = fo(z,t) + Appng% + 1R (4.52)

4.7 Summary

The FEM discretization presented herein is based on ordinary Galerkin formulations.
The coupled fluid and structural equations are discretized in a manner which makes
analysis of large systems easy and straightforward. This is done by setting the flow
and pressure variables in the same relative positions as in the Structure Matrix
Method. Doing this assures that continuity at branches and loops is maintained,
and also assures that the including of hydraulic piping elements as described in [2,
Brekke] can be done with only minor modifications. Poisson and junction coupling
is included.

Emphasis is made on frequency-domain FSI analysis, but extensions in using
FEM for stationary modal analysis is given.

The flow vector q on the right hand side of the FSI matrix equations is multiplied
with a factor —s. For pure hydraulic analysis it would be natural to divide by —s on
both sides of the equality sign to get all the s-dependent terms on the left hand side.
By looking at Equation 4.27 one can see that this will cause different dependence on
s for the fluid and structural matrices in the FSI analysis, and thus requiring global
assembling of the matrices for every w in a frequency response analysis. It will also
be impossible to use standard eigenvalue routines because of inconsistent mass and
stiffness matrices. Retaining the —s on the right hand side in front of the q vector
assures that the global fluid and structural matrices can be assembled one time only
in a frequency-domain analysis, thus greatly improving calculation speed compared
with global assembling for every frequency. It also makes it possible to use existing
matrix eigenvalue solvers. Mathematically these two forms are of course equivalent.



Chapter 5

Friction

steady state friction given by the Moody chart does not give correct damping
for oscillations of increasing frequency, and consequently some kind of frequency-
dependent damping must be included.

Several scientists have been, and still are, working on this subject. In time-
domain the work of Zielke [76] is being modified and extended for use in calculation
of turbulent flow by Vardy and Brown [60]. Another approach is to assume that the
transient friction is proportional to the instantaneous acceleration [60]. Eichinger
[11] used a two-dimensional approach by calculating the friction at every cross sec-
tion with the use of turbulence modelling and using MOC for the axial velocities. In
the frequency-domain the work of Kongeter [25], making the frequency-dependent
friction a function of frequency and amplitude, is well known. Unsteady turbulent
friction in large diameter tunnels have been developed by Brekke [2]. Krus et al.[26]
proposed a frequency-dependent friction model valid for both frequency and time-
domain. An approach based on complex frequency-dependent wave speed is given
in Wylie and Streeter [71].

A common denominator with all pipe friction models for turbulent flow (steady
state and transient) is that they all must be based on experimental data and empiri-
cal equations (Moody chart and/or empirical formulas for steady state calculations).
This is so, because the pipe flow equations are one-dimensional, while the turbulent
friction is inherently a three-dimensional phenomenon. Just as in three-dimensional
fluid flow where one divides clearly between the physical turbulence and turbulence
models used to approximate the Reynolds stress tensor, one has to divide between
physical transient friction and friction models in turbulent pipe flow. Within this
content the Moody chart can be looked upon as a turbulence model for steady state
pipe flow. Although this is a rather trivial observation [64, White],! it is impor-
tant to note that it is a model only valid for steady state flow. The generation of

'Indeed the Moody friction is deduced from the turbulent stress term -pu/v’ through the loga-
rithmic law.

43
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turbulent friction through velocity- and pressure changes is not modelled.

In this chapter a hydraulic friction model based on Rayleigh damping is pre-
sented. Both the steady state Moody friction and a dynamic friction term is mod-
elled. For frequency-domain F'SI calculations, a Rayleigh based frequency-dependent
friction will greatly simplify the calculations because it can be used on both fluid and
structure, and because Rayleigh damping does not complicate the solution process
in any way. A physical interpretation is also given.

An analytical time-domain solution to the linearized Allievi’s equations with
frequency-dependent friction is found, and a discretization procedure for use with
the Method of Characteristics (MOC) is presented.

5.1 Proportional damping

Proportional damping, or Rayleigh damping, is an accepted and widely used damp-
ing model for structural calculations [33]. For dynamic pipe flow calculations,
Rayleigh damping is not used at all ( at least not as a physical damping model to
the authors knowledge). The reason for this is that Finite Element Analysis (FEA)
is seldom used for transient pipe flow, thus other damping models have emerged.

Rayleigh damping consists of a linear combination of the mass and stiffness
matrix:

C=aM+ K (5.1)

The constants o and ( generally have to be determined experimentally. The physical
interpretation of Rayleigh damping in structural analysis is that the mass propor-
tional term is the damping for solid body movement and is independent of fre-
quency?. The stiffness proportional term is interpreted as the internal, or structural
damping, and increases with increasing frequency.

Visualization of the frequency dependence in Rayleigh damping is best achieved
with modal analysis. From Chapter 4.6.2 the flow equation using the generalized
pressure vector is:

I+ (oI + BA) N+ An = @7(4 + aq) (5.2)

where
h = ®&n (5.3)

and ® and A are the eigenvector matrix and the diagonal eigenvalue matrix respec-
tively. Since the system is uncoupled, each mode can be described by:

2 Actually the mass proportional damping decreases with increasing frequency, but the general
frequency dependence is very small compared to the stiffness proportional term.
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Figure 5.1: Typical variation of damping ratio as a function of the resonant frequency
(exaggerated).

Then from basic vibration analysis with viscous damping:

ﬁr + 277'(")7‘7'77" + W%U = QT (55)

where
2y,wy = a + Wp (5.6)

and -, is the modal damping ratio where the damping ratio is defined as the ratio of
the damping constant to the critical damping constant. For each resonant frequency,
or each mode, the damping ratio for the r'th undamped resonant frequency is defined
as [35]:

Ve =5 =+ 5w (5.7)

Looking at Equation 5.7 the only variable is the frequency, w,. A typical graph from
Equation 5.7 is plotted in Figure 5.1 which shows that the damping ratio increases
with increasing frequency, until the system eventually can become overdamped for
the highest modes. Strictly speaking the graph in Figure 5.1 is only valid for systems
that can be uncoupled, because it is impossible to find separate v values for a coupled
system (at least analytically). However it is obvious that a coupled system has the
same variation in its sub-matrices with equal o and 3 values, thus the complete
system will also have the same overall variation. The friction or damping constant
for each mode is given in Equation 5.8:
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5.2 Proportional fluid damping

Before deriving the proportional damping for hydraulics it is necessary to emphasize
that the main reason for using this particular damping model is that it simplifies
the FSI calculations considerably, because the same damping model is used for both
fluid and structure. Another reason is that the results are good compared with
experiments. It was first used by the author [45, Svingen|, without paying very much
attention to the physical interpretation or meaning. In fact, from [48, Svingen], the
following, rather incorrect and unscientific, sentence can be found in the introduction
chapter:

"It should be noted that using Rayleigh damping [stiffness proportional]
is more of an engineer’s method of obtaining good results for practical
calculations, than obtaining a mathematically correct damping model.”

However, since computed results fit very well with experiments both in time and
frequency-domain, there has to be some root in physics. By carefully reading the
physical and mathematical fundamentals of liquid flow, indeed a physical interpre-
tation is feasible®. In this chapter the damping model is first derived to show the
details without any physical explanation. Physical interpretation and explanation
are given afterwards.

It must also emphasized that frequency-dependent damping is a sub-part in this
thesis. This means that although calculations are verified with experiments, and
physical interpretations are found, a lot of future work remains both in the studying
of general literature and in theoretical and experimental development.

5.2.1 FEM, waterhammer

Starting with the Navier-Stokes equations from Chapter 3.1 (momentum and conti-
nuity in = direction):
dpy dpy Ovy _

o e g =0 (5:9)
Ove 0 Q0 0P
Pi ot Prte oxr  Oxr
(5.10)

F, + /~:+1 9 (O + 1o ravm +82U$
¥ 3” Oz \ Oz a ror or Ox?

3Trying to deduce a physical explanation from a rather arbitrary model might seem as a ques-
tionable approach. However, a physical interpretation of the model as such is indeed possible, and
is shown to be in fact deeply founded in both physics, and especially mathematics. The model
itself does not explain the physical details of the transient damping, but approximates the effect
of them. This is similar to turbulence modelling in three-dimensional flows.
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Disregarding convective terms and assuming very low compressibility (see Chapter
3.1 and Appendix A), multiplying with 27r, integration with respect to r from 0 to
R, and dividing by 7R?:

10P 0V
Eﬁ + _&L‘ =0 (5.11)
ov  oP o*V 2 Ov,
Pf ot + = o (2 +)\)W+ R or (5.12)

where A is the so called second viscosity coefficient, and has the following relation
to the bulk viscosity [24, Karim and Rosenhead]:

k= (2u+3X)/3 (5.13)
The shear stress is described with the Darcy-Weisbach friction factor [64, White]:

0v, V|V
To= —H or | ff

(5.14)

Using Equation 5.14 in Equation 5.12 gives the ordinary waterhammer equations.
The only important viscosity term is the shear force 79. The bulk viscosity is
disregarded by the use of Stokes hypothesis (k = —2/3u). The equations are then
linearized around steady state values:

10P 0V

?E—{—% =0 (5.15)
ov 1 0P B Vol
5 + y o szV (5.16)

FEM formulations are obtained as described in Chapter 4.2.1 by taking the
derivative of Equation 5.16 with respect to z, and using Equation 5.15:
1 0?P N 1 0°P Vo| oP
p; O a’p; Ot? 2Ra*p; Ot B

(5.17)

Applying FEM discretization in the same manner as described in Chapter 4.2.1:

1 1 . . :
— / N, N dzP + —— / NN"dzP+f |V02| / NN"dzP = -V (5.18)
e a pf e 2Ra pf e
or
Vol r _ X
MP + JSpMP +KP = -V (5.19)

These equations show that the damplng matrix fi2 ol is proportional to the mass
Vol

55 thus the mass proportlonal term in the Rayleigh damping

matrix by the factor f52 LYol
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model evolves automatically from the ordinary waterhammer equations. This means
that the steady state friction is in fact inverse proportional to the frequency in
accordance with Figure 5.1. One should note that this relation is not because of
the FEM discretization, but an effect of the steady state friction model itself. This
effect is also described in [4, Brekke et al.].
Frequency-dependent friction is obtained by adding stiffness proportional damp-
ing.
Mf’+f%MP +KP +KP = -V (5.20)

Here (3 is an arbitrary constant that must be set to give suitable damping ratios for
each mode. The frequency-domain version of Equation 5.20 will be:

|Vo|

s*MP+f MP + 3sKP + KP = —sV (5.21)

No mathematical or physical interpretation of the stiffness proportional damping
has yet been presented, only that it will, in accordance to Figure 5.1 and Equation
5.7, produce damping that increases with increasing frequency [75, Zaveri and Phil].

A small "error” in the damping model is introduced when applying the bound-
b
ary condition g—f‘a in Equation 5.19, Equation 5.20 and Equation5.21, since

according to Equation 5.16 (%g—i = %‘t/ f %V) also at the boundaries,

and not only —%—‘t/. In the FEM damping model the effect of steady state
friction at the boundaries is neglected. This simplification is done only with
this particular FEM discretization using pressure at the left hand side for one
reason only: It simplifies the FSI calculations considerably. This simplifica-
tion is not necessary using the flow (@) or V') on the left hand side or when
using FEM or any other methods for pure hydraulic calculations (i.e. Struc-
ture Matrix Method). Anyhow, this simplification have no effect what so ever

on the frequency-dependent term as shown in Chapter 5.6.

5.2.2 Mathematical properties
Looklng at Equation 5.20 it is clear that the stiffness proportlonal term (KP) is

a 6‘92 5; term in Equation 5.17 (The K matrix stem from a a_ term). Doing the
derlvatlon to obtain Equation 5.17 in reverse order one can see that this corresponds
to a ¥ term in Equation 5.16. The modified waterhammer equations will then be:
1 (9P ov
=0 5.22
K ot 8:6 ( )
ov. 10P % A\ 02V
_ el A0V (5.23)

o o TaRY T o
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The stiffness proportional damping is seen to come from an ”artificial bulk viscosity
term” in the waterhammer equations. The mathematical properties of frequency-
dependent stiffness proportional damping is therefore exactly the same as ordinary
bulk viscosity: A frequency-dependent dissipation term [65, White|, [31, Willard et
al.].

5.2.3 Solution procedure with MOC

The similarities to linear viscoelastic analysis can bee seen when looking at the
mathematical equivalent formulation of Equation 5.22 and Equation 5.23:

oV 10P Vol
Y o I | 24
ot * pr 0z ZRV (5:24)
1OP oV X OV
Kot " or T Kowor (5.25)

which can be regarded as a kind of linear ”viscoelastic hydraulic equations”. Proof
of this relation is presented in Appendix C. The importance of this, in the author’s
point of view, is that these equations can be solved with MOC in a similar manner
(in principle) as for soil dynamics as described in [71, Wylie and Streeter].

Substituting the pressure with the pressure head and the bulk modulus with
the wave-propagation-speed/density relation and at the same time retaining the
original nonlinear steady state damping term, gives the starting point for the MOC
procedure:

o v VIV
99 Vot TR =0 (5:26)
2 2
Oh @V N BV 5

EjL g 0r  ppg Oxot -

The term L2V ig approximated as follows:

prg OxOt
MOV N (V. AV
psg 0xot - prgAt \ Ox Az ), A,
MOV N OV A (AV
psg 0xot - prgAt Oz ppgAt \ Ax J, A,

(5.28)

Using Equation 5.28 in Equation 5.27 gives two equations that can be transformed
to ordinary differential equations:

oh oV |V| %4 -
ga—x—i-g-i- —4R =0 (5.29)
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At

Figure 5.2: Characteristic grid

oh 2 v A AV
AL A ST S e =0 (5.30)
ot g Ox  pgAt \ Az ), 4,
where the modified wave propagation speed, a,,, is defined as:
A
= Ja2+ 2L 1
A a? + Py (5.31)
The transformed equations are:
v _ 4 (5.32)
o = Fam .
dh md m A A
dh | am AV am fIVIV s 4 (5.33)
dt g dt g 4R prgAt \ Az J,_ A,

Integrating these equations along the characteristic lines while substituting the ve-
locity, V', with the flow @, gives the algebraic equations, see Figure 5.2:

Am fAx )‘f _
Hp — Hp + A (Qp —Qa) + WQP |Qal — Az A (@ —Qa) =0 (5.34)
m A A
Hp ~ Ha— 2% (Qr - Qr) - 2550 Q] - hrpgd (Qr— Q0 =0 (539

The pipe dividing is given as:

/ A
Az = At, a? + ?it (5.36)
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Often the time steps are calculated explicit. The time steps are found by reorganizing
Equation 5.36:

2
TR \/(;—;) + (20A7)°
At =

53 (5.37)

The time marching procedure is almost exactly the same as for traditional calcu-
lations. The only difference is that the dynamic friction terms in Equation 5.34
and Equation 5.35 are added in. Since the dynamic friction terms are calculated
using values from the last time step, no iteration of any kind is needed, thus the
speed of calculation nearly equals that of a traditional calculation. This particular
discretization with the proposed damping model has not been found in the available
literature. Examples using this discretization can be found in Chapter 5.3. (Ven-
natrg [62] used this damping model, but with a different discretization, based on
Equation 5.22 and Equation 5.23, resulting in an iteration procedure).

5.2.4 The second viscosity coefficient

Before going further on with the physical interpretation it is worthwhile to discuss
the ordinary bulk viscosity, or more precisely, the second viscosity coefficient. The
second viscosity coefficient have been known for a long time, but the usual treatment
of it is not to treat it at all. Stoke (1845) assumed that it should be equal to —2/3p,
thus making the bulk viscosity (Equation 5.13) disappear. Assuming incompressible
flow (divV = 0) will also make it disappear. Later experimental research has found
that Stoke’s hypothesis is only valid for ideal monatomic gases and that the second
viscosity coefficient is positive and indeed much greater than p (see review paper by
Karim and Rosenhead [24]). In water the second viscosity term is approximately
3~4 times the value of the shear viscosity depending on the temperature. In other
liquids the difference is much greater (in Benzene the ratio A/ is 130 to 150).

The physical properties of the bulk viscosity is that it is a frequency-dependent
dissipation term [24, Karim and Rosenhead]. To explain physically what the bulk
viscosity is, one must go down to atomic level. Consider a shock wave causing two
atoms to collide. In a monatomic ideal gas the molecules will only have translation
after the collision, while the molecules in a poly-atomic fluid will have both rotation
and translation. During and just after the shock the poly-atomic fluid will be in a
state of thermodynamic non-equilibrium because of the rotational degrees of free-
dom. The process of equilibration is assumed to be an irreversible (dissipative) one
controlled by the second viscosity coefficient [31, Willard et al.] [37, Schlichting].

The effect from bulk viscosity is negligible for most practical flow situation (in-
cluding liquid pipe flow where shear forces are dominant), but very important for
energy absorption and attenuation of acoustic waves at high frequencies (over 10*
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Figure 5.3: Physical explanation of bulk viscosity

Hz), and for calculation of attenuation of shock-waves in liquids and poly-atomic
gases [37, Schlichting].

5.2.5 Model versus physical explanation

The process of modelling a physical relation on one hand and explaining the physical
details on the other must not be confused. It is emphasized here because using
stiffness proportional damping (artificial bulk viscosity) is a model, not a physical
explanation, of frequency-dependent damping. In the same manner as the viscosity
coefficients models the extremely complex intermolecular motions and dissipation,
the artificial bulk viscosity models the complex three-dimensional transient and
turbulent shear flows and dissipation.

Physical explanations are vital for understanding the details. However, these
details often produce extremely complex dynamics, and consequently have to be
modelled with easier equations that include only the overall effects to produce equa-
tion sets that can be solved within the limits of ordinary computers. Using artificial
bulk viscosity for transient and oscillatory pipe friction is such a model.

5.2.6 Damping model

There is no doubt that the frequency-dependent damping found in hydraulic piping
systems stem mainly from shear forces because of alternating turbulent velocity pro-
file in the cross section as described by several authors, [76, Zielke] [11, Eichinger]
among others. Modelling this profile can, of course, be done using two dimensions
and turbulence models [11, Eichinger|, but the disadvantage is the enormous amount
of computer power compared to a one-dimensional approach. One-dimensional ap-
proaches based on Zielke’s model and/or instantaneous accelerations are still in the
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developing stages but seems like very promising time domain models [60, Vardy and
Brown].

From Chapter 5.2.4 it is obvious that the bulk viscosity or the second viscosity is
negligible compared to the shear forces, for the frequencies of importance in piping
systems (typical in the order of 0-200 Hz). The owverall physical properties how-
ever, are of great interest. By comparing bulk viscosity and frequency-dependent
hydraulic pipe friction, the following similarities can be seen:

e Both forms of attenuation are frequency-dependent.
e Dissipation increases with increasing frequency [25, Kongeter| [2, Brekke].

e For slow transients the frequency dependence is negligible [60, Vardy and
Brown]. Looking at Equation 5.22 one can see that %—Z approaches zero under

these circumstances, and consequently ‘?;TZ will also be small.

e Shock waves (waterhammer) will clearly have a large ‘?9—‘; an consequently large
%27‘2/ following the wave.

Because of these similarities the following propositions are made:

Proposition 1 Using artificial bulk viscosity to obtain frequency-dependent friction
in turbulent pipe flow is a mathematical model based on overall physical properties
of attenuation of waves.

The actual cause of the frequency-dependent damping and attenuation, the tur-
bulent alternating velocity profile, is therefore not a part of the model as such, but
merely a physical explanation of what is modelled (similar to ordinary viscosity).

The main properties of this damping model will essentially be the same as for
general stiffness proportional damping in addition to the three last terms:

e Very easily included in the calculations when using FEM.

e Can be used in direct solution techniques in time and frequency-domain, or in
modal analysis.

e Frequency-dependent friction is modelled directly into the governing equations,
thus valid in both time and frequency-domain.

e The damping constant will most likely be a function of relative roughness,
viscosity and the Reynolds number (Re;) in a very similar manner as for
steady state friction (see page 60).
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e Included as an artificial bulk viscosity term in the momentum equation of
Allievi’s equations:

1P OV

EE + % =0 (5.38)
oV 1aP A0V V|V
ot Vpor 02 iR (5.39)

5.2.7 Non-dimensional analysis and analytical solution

A clearer view of the equations is obtained by making them non-dimensional. The
steady state friction in Equation 5.4 is linearized, and the following non-dimensional
parameters are used:

0 _Lo 0,0
ot., adt Oxr.,  Ox

1 1 L
a pf a a

The equations then become:

oP, 0V,

ot * oxr,
OV, 0P, A OV, [f|Vi|L
Ot * 0. prLa O0x3 ~ 2Ra

0 (5.41)

v, (5.42)

With this choice of variables the constants in front of the damping terms control
the equations. Similar relations can be found for the ordinary waterhammer equa-
tions without the frequency dependent friction term in [70, Wylie|, although other
non-dimensionalizing quantities were used. The choice of variables here are quite
standard, except for P, and V, relating pressure and velocity to the wave propa-
gation velocity. The reason for doing this is to retain valid equations also for zero
mean flow and mean pressure (acoustics).

An interesting parameter is the pipe length L. For long pipes the steady state
friction term will be dominant while the transient parameter will dominate the
solution for shorter pipes. This can be explained by the fact that long pipes have
lower resonant-frequencies than short pipes, thus the effect of the artificial bulk
viscosity will start at a higher relative resonant-frequency number.

In time domain it is obvious that a long pipe will have larger steady state pressure
loss than a short pipe, considering that they have the same friction per unit length.

The transient friction however, will travel with the velocity change ﬁj@V; (for example

a pressure wave). When integrating the instantaneous losses due to the transient
friction along the two pipes at any given moment in time, they must be equal
regardless of the length of the pipe, thus the ratio:%, will be larger for
short pipes than for long pipes. This relation can be visualized by considering two

equal pressure waves propagating at equal speed in one long and one short pipe (see
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Figure 5.4: Two equal pressure waves traveling in two pipes of different lengths.

Figure 5.4). When the wave reach the end of the short pipe, the wave in the long
pipe still has some distance to go before reaching its end. Since obviously the total
amount of pressure loss due to the waves is equal in the two pipes at that moment
(see also Figure 5.5 and Figure 5.6), the shorter pipe would have lost more pressure
in relative terms with respect to the total length than the longer pipe.

Combining the Equation 5.41 and Equation 5.42 will give two equivalent wave-
like equations®:

0*P, O0*P, f|Vo|LOP, Ay PP,

_ — = A4
ot? O0x? 2Ra  Ot, +pra8x§8t* 0 (5.43)

VL PVe fIVlLOVe | XA OPVL 0 (5.44)
ot2  Ox2 2Ra  0t,  p;Ladz30t, ’

Analytical solutions are found by the method of separation of variables. A solution
to Equation 5.43 is assumed to be on the form

P,(x,t) = P(z)T(t) (5.45)
Inserting this into Equation 5.43 gives:

~d*T  d*P - _dT d2P dT
_pte 8 G p gl 4
gz gl el a0 (5-46)

4Since they are non-dimensional they are in fact equal. Subtracting one equation from the other
will result in the equation 0 = 0. (The physical interpretations are of course different, as well as
the boundary conditions).
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where a, = 2lE and B, = p;\ﬁ. It is impossible to separate P and T on each side of

2Ra
the equality sign and consequently a trial-and-error procedure has to be performed.

From the chapter on modal analysis (Chapter 4.6.2), it was found that the modal
damping ratio was -y, = %“}% + gwr, and it should therefore be natural to assume

that the damping for the analytical time-dependent part, T, will be similar and
that the z-dependent part will have a sine shape. Indeed a solution that satisfies
Equation 5.43 is found by inspection to be’:

P(z) = Ay cos(w,,) + Ay sin(w,z.) (5.47)
T(t) _ Ble(f’y—l-\/’nyl)*w*t* + Bze(fvf\/'y?fl)*w*t* (548)

where

The constants are determined by the boundary and initial conditions. The general
solution will be (considered the resonant-frequencies are found from Equation 5.44
with the particular boundary conditions):

o0

P.(x,t) = Z [(A1 cos(w,x)s + Agsin(w,x),) *
r=1 (5.50)

(BTIG(*’H-\/’YQfl)*w*rt* + Brge(i’yiw’ﬁil)*w*rt*)]

_fIB|L 1 Af War
7= 9Ra 2w,r  prLla 2
Although the analytical solution will be somewhat impractical for general calcu-

lations because of the large amount of work to determine the boundary and initial
conditions, it shows some important properties concerning the damping.

(5.51)

e For low non-dimensional frequencies the solution is underdamped (2 < 1).

e Increasing the frequencies increases the damping until eventually the system
becomes overdamped (y2 > 1) for very high frequencies.

e )\; have to be determined to give proper frequency-dependent damping (ex-
periments).

e The pipe length, L, is an important parameter for the relative effect of transient
damping with respect to resonant-frequencies.

e Setting s to zero gives the analytical solution to the ordinary waterhammer
equations with linearized steady state friction.

5The solution was found by ”intelligent guessing” and trial and error.
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Figure 5.5: Traveling pressure wave with corresponding velocity profile.
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5.2.8 Physical interpretation

Mathematically the damping term is the same as bulk viscosity. Consequently the
physical interpretation has to be analogous to the physical interpretation of bulk-
viscosity, or more precisely, the second viscosity coefficient as given in Chapter 5.2.4.
In Figure 5.5 a traveling pressure wave is drawn where dx is a small unit of pipe.
The figure simulates the pressure and velocity profile in a pipe for three time steps
after a total closure of a valve. The velocity profiles are drawn for a mid-pipe sec-
tion in accordance with computations and measurements in [11, Eichinger|. By
looking at the velocity profile for time step t3 one can se that it is in a state of
non-equilibrium with strong shear forces. This means that a substantial amount
of pressure energy has been used to make this velocity profile (this is just another
way of saying that the shear forces at the wall have increased). Considering three-
dimensional (already) turbulent pipe flow, it is clear that this velocity profile will
cause even more turbulence , see Figure 5.6. The process of equilibration, which in
this case will be the process of averaging the turbulence across the cross section, thus
making a more or less even velocity profile, will obviously be a dissipative and irre-
versible one. Analogous to the second viscosity coefficient, this dissipative process
of equilibration is controlled by the damping coefficient, A\;. The amount of fluid
energy that dissipates during the equilibration process is of course proportional to
the amount of energy needed to make the corresponding velocity profile. Therefore,
the damping coefficient, A¢, has a relation to the shear forces caused by this velocity
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Figure 5.6: Equilibration of turbulence caused by velocity profile.
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Figure 5.7: Total energy in a pipe cross section during the passing of a pressure
wave.

profile through energy considerations. In other words, the damping coefficient A,

has no ”knowledge” of the transient shear forces, but is an estimation of the energy

lost in the process of making them. Figure 5.7 shows the kinetic and the potential

energy (in the form of pressure) for the three time steps in Figure 5.5 in addition to

the dissipation. The long tail of kinetic energy can be interpreted as the remaining

shear forces, and is consistent with research presented in [60, Vardy and Brown].
By looking at the governing equations (Equation 5.52 and Equation 5.53):

10P 0OV

EE + % =0 (5.52)
oV 1 OP A o*v VIV]|
ot + p; Oz p; Ox? / 4R (5:53)

2%V - : 1 9%P : :
one can see that Z— is proportional to —%=--. In other words the damping is

proportional to the rate of change of pressure per unit time per unit length. The
damping term will therefore only have a value as long as the flow is in a phase
of dynamic change, and will not affect the steady state solution. A more physical
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Figure 5.8: Increasing the frequency while retaining the same amplitude.

interpretation of this is that the amount of energy lost through turbulent dissipation
is proportional to the steepness of a pressure wave, and the speed of which this wave
changes.

. . . . 2
A frequency-domain view is somewhat clearer, where, from Equation 5.52: %TZ =
i . . . 2
—%g—f. Considering constant frequency, the only way to increase %T‘Q/, and thus

increase the amount of damping, is to increase the amplitude, which is natural from
a physical point of view®. Increasing the frequency and at the same time retaining
a constant amplitude will obviously also increase g—l;, because more peaks would be
made for the same length of pipe (see Figure 5.8).

Based on the argumentations in this chapter, the following proposition is made:

Proposition 2 The physical interpretation of the proposed damping coefficient A,
s a parameter controlling the amount of fluid energy that is dissipated during the
equilibration of a non-equilibrium (turbulent) velocity profile caused by fluid fluctu-
ations in time and space (pressure wave), hence it controls the transient damping.

6This should not be confused with any relations to the steady state flow or the steady state
friction.
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5.2.9 Dimensional analysis

With the use of dimensional analysis it can be found which physical parameters
(is most likely to) affect the damping coefficient A;. The choice of variables are
made with the constraint that the flow-amplitude and frequency dependence is auto-
matically included in the equations as explained in the previous section. With this
constraint it is natural to assume that As has the following relation:

Ap = F(d, € p, Vo, p) (5.54)

It is a function of diameter, roughness, viscosity, velocity and density. The only
”questionable” parameter is the velocity, which could be the steady state velocity
as given in Equation 5.54 or, perhaps more likely, the instantaneous velocity”.

By using Buckingham pi theorem, three pi groups are found:

H1 N (5.55)

1
€
H2 = (5.56)
Vod
[[=2° (5.57)
3 H
With these pi groups Equation 5.54 reduces to:
Ar € pVod\ €
7_F<d, . )_F<d,Red) (5.58)

Thus, the dynamic damping coefficient is a function of viscosity, relative roughness
and the Reynold’s number.

"Being dependent on the steady state velocity, or the ”starting velocity”, is very fortunate
from a calculation point of view, and does indeed give adequate results. However, from a physical
point of view, the damping coefficient should be a function of the instantanious velocity, requiering
calculation of "new” Ay values at each time step.
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5.3 Verifications

The main objective with the verification is to show that the derived damping model
is capable of calculating correct transient and oscillatory friction. Emphasis is made
on the qualitative observations and not so much on determination of the Ay value
with respect to diameter, roughness and Re. The reason for this is that exact
determination of damping constants for different pipes is outside the scope- and
time-frame for this thesis, and is consequently part of future work. However, some
leads to the numerical values of the constant, Ay, for some specific pipes are given.

5.3.1 Time-domain

For the time-domain verifications experiments and calculations found in Peter Eich-
inger’s dissertation are used [11] for comparison with calculations with the proposed
damping model. Time-domain FEM calculations with frequency-dependent friction
are performed with modal analysis as presented in Chapter 4.6.2. Time-domain
MOC calculations are performed with the discretization technique presented in Sec-
tion 5.2.3.

Experimental data and calculation found in Eichinger’s thesis of total closure
ofthe valve for the system given in Figure 5.9 can be found in Figure 5.10. This
figure shows calculations made with MOC combined with a two dimensional finite
difference approach using the k — € turbulence model [11], and calculations made
with an ordinary MOC procedure with steady state friction, as well as experimental
data.

Figure 5.11 shows calculations performed by the author using FEM (modal analy-
sis) and the proposed dynamic friction factor (artificial bulk viscosity). The calcula-
tions were performed with a program made in the interactive programming environ-
ment Maple. In the FEM model 31 first-order elements were used. The calculation
shows that the frequency is correct, and also the amplitude. The shape of the calcu-
lated amplitudes are rounded as found in the experiments, but show a bit too much
sinusoidal look after the first couple of oscillations. The dynamic friction factor, Ay,
was found to be 700,000.0. This may seem very much, but when comparing the
stiffness matrix and the damping matrix, C = K, one finds that the value of 3 is
only 0.00038. (No steady state friction is included).

In Figure 5.12 the result from a calculation done by the author with MOC and
the proposed dynamic friction factor is plotted. A FORTRAN program for a single
pipeline was made for these calculations. The pipe was divided into 30 segments.
The steady state friction is also included in this calculation. The dynamic friction
factor for this calculation was found to be the same as for the calculations with
FEM, (A; = 700,000.0, see Figure 5.11).
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Figure 5.9: Characteristics of the system for full closure of valve, turbulent Re =
7200.

MOC + turbulence modell
4 +H [bar] . mEmsmmesmoaw MOC, Stationary friction

a0 a1 0.2 0.3 0.4 0.5

Figure 5.10: Calculations and experiment of pressure pulses after total closure of
valve (Eichinger’s dissertation). Re = 7200.
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Figure 5.11: Calculation of sudden closure with the proposed dynamic friction factor
using FEM and modal analysis. Re = 7200.
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Figure 5.12: Calculation of sudden closure with the proposed dynamic friction factor
using MOC. Note- starting time is 1 s. Re = 7200.
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Figure 5.13: Piping system for experiment with attenuation of pressure waves, tur-
bulent Re=5300.

An experiment with longer duration to show the attenuation over a period of time
is shown in Figure 5.13, Figure 5.14 ,Figure 5.15 and Figure 5.16. Figure 5.14 (from
Eichinger’s thesis) shows clearly that steady state friction gives too little attenuation
compared with experiments. Calculations with Eichinger’s model, Figure 5.14, and
the calculations with the proposed dynamic friction model performed by the author,
Figure 5.15 and Figure 5.16, show excellent agreement with experiments.  Also
with the calculations in Figure 5.15 and Figure 5.16 the \; values was found to be
700,000.0.

The FEM and MOC calculations presented here (Figure 5.11, Figure 5.12, Figure
5.15 and Figure 5.16) are very similar. They show that the proposed dynamic friction
factor (frequency dependent damping model) can be used with both discretization
techniques.
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Figure 5.14: Experimental data and calculations with MOC and Eichinger’s model.
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Figure 5.15: Calculation of sudden closure with the proposed dynamic friction factor
using FEM and modal analysis. Re = 5300.
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Figure 5.16: Calculation of sudden closure with the proposed dynamic friction factor
using MOC. Note- starting time is 1 s. Re = 5300.
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Figure 5.17: Experimental setup for frequency-domain verification

5.3.2 Frequency-domain

Frequency-domain experiments on single straight pipelines with turbulent mean flow
have not been found by the author in the available literature®. It is also trouble-
some to compare the model with other models found in literature (i.e. [2, Brekke]),
because these models are based on empirical friction factor functions of frequency,
amplitude etc. added to the steady state friction factor. Comparison of these mod-
els is performed with these friction factors. The model presented here is based more
fundamentally on the mathematics of the governing equations, thus no relevant fric-
tion factor as expressed in other models can be found. Verifications are achieved
using the structure matrix method as described in the next chapter and with ex-
periments and calculations found in [44, Svingen]|. The Structure Matrix Method
is used because analytical functions can be found for a single pipe line. Frequency-
domain verifications are also included with the experiments and calculations of FSI
using FEM in Chapter 8.1. It can be included here that the Ay value for the 80 mm
diameter smooth stainless steel pipe with water as used in the FSI experiment was
approximately 34, 000.0.

The experiments® from [44, Svingen| were done with a 300m (corroded) galva-
nized steel pipe as shown in Figure 5.17. The valve characteristics are approximated
with the polynomial Q(y) = 0.5y—20.4y? for Hy = 15m. The non-dimensional trans-
fer from pressure head to valve opening was then measured and calculated. For an
opening yo = 3mm and amplitude y,mp = 0.5mm, the Nyquist diagram from the
experiments is given in Figure 5.18. Calculations taken from [44] using Kongeter’s
damping model [25], together with calculations using the proposed damping model
are in Figure 5.19. The figure shows that excellent frequency-dependent damping
can be approximated. The Ay value was found to be 250,000 (in comparison with

8Frequency-dependent friction is a part of the ongoing research at the Water Power Laboratory
at NTNU. Experimental apparatus are now being built for future research.

9The pipe itself have a very high roughness due to corrosion as well as a lot of bends. This
makes it unsuitable for exact determination of friction factors. However, it is well suited to show
the general frequency-dependent damping behavior, and therefore to verify the proposed model.
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Figure 5.19: Nyquist diagrams from calculations using stiffness proportional damp-
ing (artificial bulk viscosity) compared with Kéngeter’s damping model.
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Kongeter’s model), which corresponds to a C matrix 0.007 times the K matrix.
This is 7.3 times the A; value found for the smooth stainless steel pipe in the FSI
experiments which is a strong indication that the value is a function of the roughness.

5.4 The Structure Matrix Method

In the previous chapter (Chapter 5.3) the Structure Matrix Method [2] was used
because of the exactness of an analytical solution. The starting point is the Laplace
transformed version of Equation 5.44 (non-dimensional variables):

0*V,  f|Vo| Ls s 02V
— 2 * — f * =
sVt 0?2 2Ra Vet prLa Ox? (5:59)
which is equivalent to:
92V, 2 flVo|Ls
= i 20 (5.60)
* 1+ oila
A general solution to this equation is
Vi = A€ 4 Age™™ (5.61)
where
(5.62)

The procedure of making the pipe matrix involves a substantial amount of algebra
and is essentially the same as described in [2, Brekke] and [73, Xinxin], or as with
the Transfer Matrix Method. The only difference is that the starting point of the
derivation is with the flow and not the pressure as the free variable. This is because
of the term 8;;2* making the derivation through the pressure very hard to grasp
compared with *using the flow. The pipe matrix equation becomes:

s 1 s 1

ztanhz  zsinhz [ P } { Va }
s 1 s 1 P*Q - ‘/*2

zsinh z z tanh z

(5.63)

In general piping analysis it is often more convenient to use the pressure head and
the flow (as in Chapter 5.3). Making the pressure head and flow non-dimensional
while keeping the dimensions of ¢t and = one obtains the structure matrix used in
Chapter 5.3:

-9 gp_r

= — 5.64
do ho (5.64)
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1 1
s tanh(Lz/a)  sinh(Lz/a) H* o
| |l ]lE] e
sinh(Lz/a)  tanh(Lz/a)
doa
= 51 (5.66)

5.5 The Transfer Matrix Method

The transfer matrix with this damping model can be obtained in essentially the
same manner as the structure matrix. Rearranging Equation 5.63:

z .
[ Py } _ Scosh(z) B sinh(z) [ P, } (5.67)
Vi —sinh(z) — cosh(z) Vi
z
or as the equivalent inverse form:
cosh z Zsinh z
ra] | AT ey .
& . sinhz  coshz Vi
ZZt Zt
where
Z; =2cosh?z — 1 (5.69)

and z is given by Equation 5.62.
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5.6 Simplifications with FEM

As mentioned on page 48 a small error in the damping model is introduced when
applying the boundary conditions in the particular FEM discretization used herein.
Going back to Equation 5.41 and Equation 5.42 one can see that two equivalent wave
equations (Equation 5.43 and Equation 5.44) can be made. When using Equation
5.44 the conditions at the boundaries can be obtained easily and correctly from
Equation 5.41 (Z& (I*BZI E’I*:l) = ap*(m*azt?,m*:n)_ However, in the FSI analysis the use
of pressure on the right hand side will cause problems with the junction coupling
because of the continuity relations. When using Equation 5.43 the boundary relation
for Wm"+€’m*:1) must be taken from Equation 5.42. Although this is fully possible,
it will cause recomputing of the global stiffness and mass matrices in the FSI analysis
for every frequency because the hydraulic parts of the matrices would be divided by
extra functions of jw. Disregarding the extra terms causes no such recomputing.
The frequency domain FEM formulation of Equation 5.43, including the bound-

ary relation due to partial integration, is:

8P*} 1 (5.70)

(32 + a*s) M.P.+ (1+8,9) K.P, = (1+,s) {N e

0

The 2E relation must be obtained from Equation 5.42. However, Equation 5.42

0T«
have the term %,2;2* which must be taken care of. This is done with the relation from

Equation 5.60, thus Equation 5.70 becomes:

(5° + aus) MP+ (1 + 3,5) K.P, =

2 (5.71)
5%+ a*s> V.

(1+3,s) <_3_a*+ﬁ*1+ﬁs

Rearranging Equation 5.71 causes cancellation of all the 3, terms on the right side,
and the equation becomes the non-dimensional hydraulic FEM equation without
the damping simplifications at the boundaries:

— 2 _[M,P.+a,sM,P, + 3,sK.P.+K.P,] = —sV, (5.72)
(S + Oé*)
whereas the simplified version similar to Equation 5.21 is:
[s"M.,P.+a,sM.P, + 3sK.P.+K,P,| = —sV (5.73)
where
S L CIE Y,
’ 2Ra " psla

(5.74)
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Figure 5.20: Bode diagram of the damping error due to simplification.

| Frequency range | Damping |

0 — wa =5 f|vo] %= | too little
wi1 = 5 f [vo] 2= — oo | exact

Table 5.1: Frequency range of damping

The simplified version is obtained by neglecting the a, term in the fraction in front
of the parenthesis in Equation 5.72. When considering a pipe with the same non-
dimensional velocity oscillation, the relation of correct pressure versus simplified
pressure (Equation 5.72 and 5.73) is:

Grang e

P

=1

Pc S+%f|UO|RL
o272 OF 5.75
2 . (5.75)

This function is zero for the non-dimensional frequency w, = % f |vol %, has a pole
at w, = 0, and a gain of (3 f |vg| %)_1. According to control theory [18, Haugen]
the bode diagram (asymptotes) as given in Figure 5.20 can be drawn. The dif-
ferent damping from the diagram are listed in Table 5.1. (To obtain dimensional
frequencies one must multiply with £).

As an example the frequency for the system in Figure 5.17 will be: w; ~ 0.017H z.
For the FSI experiment the frequency will be: w; ~ 0.012Hz. This shows that
the simplified damping is mathematically correct for all practical frequency-domain
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calculations (In the FSI experiments in Chapter 7.1 the starting frequencies were
4,5Hz). Only for very low frequencies for long pipes will the simplification pro-
duce an error by producing too little steady state damping, thus requiring the non-
simplified model to be used. One should also note that the frequency dependent
damping is correct for all frequencies (no simplification is done).

Usually, in structural calculations only stiffness proportional damping is used
[33, Petyt]. Doing this also for the flow equations (f = 0 in Equation 5.75), one can
see that the mathematically correct damping is produced.

5.7 Summary

In this chapter the special frequency-dependent friction model used in the FSI cal-
culations is proposed, explained and verified. It is shown that the same friction
model can be used in both time and frequency-domain using FEM, SMM, TMM or
MOC. The model is still in the early development stages, thus further experiments
and research are needed to make it an applicable model. Especially the investiga-
tion of the friction factor A; and its relation to other piping parameters (viscosity,
relative roughness and Reynold’s number) has to be undertaken. However, it is clear
that the model introduces minimal extra computational effort both for frequency-
and time-domain calculations using either FEM, SMM or MOC. The closest related
damping models found in literature are the model using complex wave-speed found
in [71, Wylie and Streeter| and the model proposed in [26, Krus et al.].

A considerable amount of this chapter has been used to give a physical interpre-
tation seen in relation to turbulent, transient pipe flow. The physical interpretation
is found to be a relaxation process due to the increased friction because of rapid
change in velocity profile in a pipe. The fact that it is relaxation process fundamen-
tally based on the governing equations means that the flow-amplitude and frequency
dependence is automatically included. An important practical aspect of this is that
no iteration is needed in the calculations. Mathematically the model introduces an
artificial viscosity term in the equations.

In relation to FEM the model is ordinary Rayleigh damping, making frequency-
dependent FSI calculations easy and consistent. In the discretization used herein for
the FSI calculation a simplification is done. This simplification affect only the steady
state damping term by producing too little steady state friction in the extreme lower
end of the frequency range (far below any of the starting frequencies used for the
experiments in this thesis). This is done only to avoid recalculation of the matrices
for each frequency (In the calculations only stiffness proportional damping is used).

The frequency-dependent damping in the FSI calculations is regarded as ”in-
ternal”, that is -no direct interaction is caused by the damping. This is consistent
with research done by other authors in which the interaction caused by friction
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forces is negligible compared with the Poisson and junction coupling [8, de Jong]
[56, Tijsseling and Lavooij].

Analytical solution to the waterhammer equations with the proposed frequency-
dependent damping is found. The solution is valid in time-domain.



Chapter 6

System elements

Two of the main parts of the objective of this thesis is to be able to include all
the hydraulic system components developed for the Structure Matrix Method [73,
Xinxin], and to include supports and surrounding structure. This chapter explains
how this is achieved along with some other extensions.

6.1 Hydraulic components

In [2, Brekke| and [73, Xinxin| a whole range of different components ranging from
simple throttles to complete hydro-turbines including the governor is derived for use
with SMM. The specific derivation of these matrices is therefore not presented here,
but only an explanation of the small changes needed for FSI analysis using the FEM
program.

As an example, the matrix for a valve, is used. The valve is chosen because it is
used for the experiments in this thesis. The matrix equation as given in [73, Xinxin]
is:

—% —llldyo % ha q
0 kq 0 Y = Yex (6’ 1)
% Hyo _% ha 2

which is obtained from the Taylor expansion of the equation:
Q= u(Y)\/29 (Hz — Hy) (6.2)
where Y is the valve opening, u is the flow coefficient as a function of Y, and H;

and Hj are the pressure heads at each side of the valve. p,, = (g—;‘) and k, is the
0

relation from the valve excitation 7, and the actual valve opening y (often equal to
one). The variables in the matrix are non-dimensional:
H Q Y

h=-— g=-% y=— 6.3
m 170 YT, (6:3)
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In the discretization for the F'SI program, the flow vector on the right hand side
in Equation 4.28 is multiplied with a factor —s for convenience reasons. Doing this
with Equation 6.1 one obtains a matrix that can be placed directly into the FSI
program:

_% ~Hyo % hy —Sq1
—s| 0 & 0 y | = —SYen (6.4)
% Hyo _% ha 52

All the other components, including pumps and turbines as described in [73, Xinxin],
can be obtained in exactly the same manner. In some cases it is more convenient not
to have non-dimensional variables, however this is done in a rather trivial manner
using Equation 6.3.

In relation to FSI one can think of circumstances where the valve can move
together with the pipe. This happened unintentionally in the FSI experiments and
modifications had to be done as described in [49, Svingen]. Actually, making a valve
support rigid with respect to FSI forces is a hard task requiring massive measures
in both strength and mass. For the experiments in this thesis the original valve
supports consisting of two 100 x 100 x 9 mm H beams, was replaced with two
300 x 300 x 11 mm H beams, along with some major modifications to the design to
make it more stiff. It is therefore safe to say that in general a valve is always free
to move to some extent.

A moving valve can be modelled in many different ways according to the type of
valve and the support conditions. An example showing the general modifications is
given here for a short thick walled end of line valve free to move in axial direction
with respect to the pipe.

The hydraulic part will be as in Equation 6.4 with additional boundary conditions
similar to Equation 4.19:

1Q Q 1Q
—(A[) + Aem(u}))SQ’Uq _5_2 _uy07§ 5?2 hl
-5 0 k%%? 0 Yy
2 1 Q 1Q
(Ao + Aea(w))s7us 3 My e | LT (6.5)
—Sq1
- SYex
—8q2

where A, (w) represents the oscillating area change due to the valve opening and
Ay is the steady state opening. (For an end of line valve the displacement uy is of
course nonexistent because u; will be the last node of the pipe).
The equation of motion for this valve with an oscillating opening area will simply
be:
s*muy = fi + A1(w)pghy (6.6)

'In the calculations, @, was approximated with the relation Qo = u(Y)o+/2g (Ha — H1),-
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which is equal to an added mass term (the total mass of the valve) at the last node
of the pipe.

6.2 Supports and surrounding structure

To include supports and surrounding structure is rather straightforward. Because
the program is based on the Finite Element Method which is virtually the only
method used in structural calculations today, literally every kind of surrounding
structure and support regardless of the complexity can be included in a painless
manner by simply adding them into the global matrices in exactly the same way as
the pipes themselves.

Indeed this point is one of the main advantages of the discretization presented
in this thesis.

6.3 Bends and elbows

Correct treatment of bends requires the use of three-dimensional structural software.
The reason for this is that bends inherit very complex strain-stress relations. A
treatment of bends using geometrically nonlinear finite elements can be found in
[23, Jonsson].

However, for a general piping software nonlinear three-dimensional calculation
must be disregarded to keep the computations to a reasonable level. The usual
method is to model the bends as short pipe segments with a bending stiffness (E1,)
that is decreased by a so-called flexibility factor [12, Everstine]. The flexibility
factors used herein are the ones developed by von Kdrméan in 1911, and can be
found in [8, de Jong]:

7
fr, =1.65—
€Tc
where R is the mean radius of the pipe, e is the wall thickness and r, is the radius
of curvature of the bend. The constraints to this formula is that 2= > 1.7, roy > 2R
where 7 is the elbow angle in radians, and that there are no flanges or other stiffeners
in a distance R on either side of the bend. It should be noted that the effect of
the flexibility factor on the overall response decreases when the elbows are short
compared with the lengths of the pipes (i.e. long slender pipes).

6.4 Acoustic sources

In recent years the research on acoustical sources in piping systems has been a field
of growing importance. Graf and Ziada [16] mention several cases of flow induced
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vibrations due to shear instabilities at branches. The excitation mechanisms causing
this phenomena are at present not well understood, and further research in this field
is likely to occur. A treatment of two coaxial closed side branches is found in [16],
and an analytical treatment of the flow past a deep cavity can be found in [10,
Durgin and Graf].

6.5 Summary

In this chapter it is shown how to include hydraulic components described in [2,
Brekke| and [73, Xinxin| ranging from throttles to hydro-turbines by doing some
minor modification to the matrices. It is also shown how to modify these matrices
if moving boundary conditions must be applied. Since the pipes themselves are
structures modelled with FEM, including surrounding structure is no different than
the assembling of global piping matrices. The flexibility factors of elbows are given
a brief introduction.



Chapter 7

Experimental arrangement and
computer program

7.1 Experimental Arrangement

In order to verify and improve the computer program an experimental piping rig was
built. When doing an experiment of any kind, it is important to isolate the details
that are subjects of research. Consequently the rig was built with long slender
thin-walled pipes, in order to be sure that FSI (junction and Poisson coupling)
was of dominance. The philosophy when designing the system was to purify the
fluid structure interaction in the pipes only, i.e. disturbances from external sources
and effects from supports should be minimized as much as possible. Making the
boundary conditions simple and clean was therefore stressed.

7.1.1 Layout

The experimental apparatus consists of an L shaped piping system with constant
water level, i.e. constant head upstream, and a specially designed valve downstream.
The valve discharges into atmosphere. The pipes are thin walled and long compared
to the diameter. Hydraulic pressures and structural accelerations are measured at
several places in the system.

A schematic sketch showing the overall dimensions are given in Figure 7.1 and
the properties are listed in Table 7.1. Key points are rigid supports only at the
upstream and downstream ends, causing the system to be extremely movable, and
thus enhance the FSI effects. Because of the extreme slenderness the system changes
shape when filled with water (especially in the reach marked as number 3 in Figure
7.1). The exact detailed dimensions of the water filled system are found in Figure
7.2 with corresponding coordinates in Table 7.2 (the same coordinates are used in
the computer program).

79
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7.1.2 Calibrations

Calibration of the pressure transducers was performed at the beginning of each day
with experimental work by first reading the voltage at zero pressure (no water), and
then reading the pressure when the system was filled with water and there where no
flow in the system. The height from the transducer at the valve and to the top of the
water level was previously measured to be 9.82m, and transducers where calibrated
according to this!.

Accelerometers where calibrated by setting them on a wheel and rotating the
wheel to obtain +1g.

7.1.3 Other components and details

e The stationary pressure head measured from the transducer at the valve is
9.82m.

e The pipes are welded together.
e The water quality is ordinary tap which discharges to atmosphere at the valve.

e Pressure transducers are of type ”Entran EPX-M51W-7A” which are flush
mounted.

e Accelerometers are of type ”Entran EGAS-FS-50D”. These are extremely
small, weighing only 1/2 gram. They are attached with double-sided tape
or a special wax, and can therefore be freely moved around.

e Transducers and accelerometers are driven by an "HBM MGA MA 10 DC”
amplifier transmitting amplified signals to a frequency response analyzer: ”SO-
LARTRON/Schlumberger 1253 Gain-Phase Analyzer”. Pictures of the system
are shown in Figure 7.3.

! Accelerometers and pressure transducers were calibrated from the factory. For the transducers
no measurable nonlinearities where found. The accelerometers had a bandwidth from zero to one
thousand Hz.
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Figure 7.1: A sketch showing the overall dimensions of the piping system. Properties
are given in Table 7.1.

Number | Dimension [mm)] | Description [SI units]

1 D100, d80 Stainless steel, p = 7840, F = 2.0 * 10},
v=20.3

2 D=200, d80 Shutdown valve, bolted between DIN 2576
80 PN10 flanges

3 D83, d80 Stainless steel, p = 7840, E = 2.0 * 10!,
v=20.3

4 D84, d80, R130 Bend, stainless steel, p = 7840, E = 2.0 x
10, v =0.3

5) D83, d80 Stainless steel, p = 7840, E = 2.0 * 10!,
v=20.3

6 D200, d80 DIN 2576 80 PN10 flange and steel flange 80
PN 10

7 D100, d80 Steel, p = 7840, £ = 2.1+ 10", v = 0.3

8 - Entran pressure transducer

9 - Entran accelerometer

Table 7.1: Material properties of the system, D and d are outer and inner diameters
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1-2: thick walled pipe B
2-3: flange | 2
3-12:  piping system — 3
12-13:  shutdown valve including flanges
13-16: thick walled valve pipe
5-8: bend flexibility factor 10.7
y 1: constrained in all dir.
14,15:  constrained in x and y dir.
4,10,11: positions of pressure transducers
x | 4
|5
16 15 14131211 10 9 %6
\ 7

Figure 7.2: Measurements of water filled system (note- not to scale).

| Coordinate | X | y |
1 11.665 | 8.842
2 11.665 | 8.742
3 11.665 | 8.702
4 11.665 | 0.437
5 11.665 | 0.337
6 11.648 | 0.267
7 11.6 0.223
8 11.535 | 0.207
9 7.465 | 0.1
10 5.545 | -0.03
11 0.615 | 0.0
12 0.515 | 0.0
13 0.43 0.0
14 0.3 0.0
15 0.1 0.0
16 0.0 0.0

Table 7.2: Coordinates of the system
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Figure 7.3: Pictures of the piping system. a) showing the horizontal reach and b)
showing the bend with transducers.
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7.1.4 Disc valve

In order to make sinusoidal valve movements with constant amplitudes over a wide
range of frequencies, (f = 0 ~ 300Hz), a specially designed valve was made. Pic-
tures of the valve are shown in Figure 7.4 Figure 7.5 and Figure 7.6. The valve
consists of:

e A short pipe with a 80 by 10 mm sluice opening.

e A rotating teflon? disk (thickness 2 mm), with three sine functions superposi-
tioned on the periphery partially covering the sluice.

e An electric motor driven by a three-phase ”SIEMENS SIMOVERT MICRO
MASTER” frequency converter making the speed of the motor adjustable from
0 to 6000 rpm. in 6.0 rpm. intervals (0.1 Hz), (see Figure 7.7).

With three sine functions on the periphery, the valve opening is adjustable in a
range from 0 to 300 Hz. in intervals of 0.3 Hz. To obtain stability at high speed the
disk was sandwiched between two steel plates. A digital counter was also connected
to the motor to obtain the exact frequency (rpm), because a small deviation from
the input to output frequency was measured. The steady state opening and thus
the relative amplitude is adjustable by opening and closing a ”gate” on the opposite
side of the disk. Absolute amplitudes can be adjusted by changing the disk. By
varying the number of superpositioned sine functions the top end of the frequency
range can be adjusted. The formula describing the shape of the disk is:

r =1+ Asin(nb)

where r is the radius, g is the mean radius, A is the amplitude, n is the number of
sine functions per revolution (n > 2) and 6 is the angle. In Figure 7.8 a typical disk
is shown.

The first disk was made ”by hand”, but was found to be too inaccurate. It is
this disk that is shown in Figure 7.5. Three new disks with amplitudes of 5, 2.5,
and 1.5 mm were made. These three disks were made on a CNC machine at HiST
in Trondheim with an accuracy of approximately £0.004 mm.

2polytetrafluorethylene
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Figure 7.4: The rotating disk valve (back view).

gl "

-
P

Figure 7.5: Front view of the valve showing the disk and valve opening.
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Figure 7.6: Picture of the valve in operation.
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Figure 7.7: A sketch showing the design of the valve.
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Figure 7.9: Data acquisition system

7.1.5 Data acquisition system

The gain-phase analyzer was controlled with PC and LabVIEW through a GPIB
communication port. A program was made in the LabVIEW environment that could
control all the functions of the gain-phase analyzer as well as showing all the results
graphically and saving them for later use, see Figure 7.9.

The gain-phase analyzer was used in the ”single channel mode” which means that
only one channel at a time was measured (normally two channels are used to obtain
the transfer function H,/H; between these channels). The reason for measuring only
one channel was that the disk mounted on the motor was controlled by the frequency
converter and not by the gain-phase analyzer, thus the frequency of the valve (three
times that of the motor) had to be "manually” fed into the gain-phase analyzer.
In this experiment it is the transfer function from pressure and acceleration to the
valve opening that is of interest, and since the exact amplitude and frequency of the
valve are known, there were no need to measure it by the gain-phase analyzer. When
using the ”single channel mode” the measured signal is divided by unity, thus the
amplitude and phase are restored when the frequency and amplitude of the excited
signal are known. The practical consequence of this was the manual ”feeding” of
frequencies read from the counter. However, this was (partly) compensated for by
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the use of LabVIEW?.

The experiments were done by setting the frequency of the valve opening by ad-
justing the frequency converter accordingly, and to measure the frequency response
(amplitude) of the pressure transducers and accelerometers. Amplitudes and steady
state openings are given together with the results in Chapter 8.1.

7.2 Computer program

Making a general program from scratch requires a lot of work, and has been the
most laborious part of this thesis. The program is coded with a mixture of C++
and FORTRAN. The main body of the program was coded with the use of objects
(Object Oriented Programming, OOP) in C++. For the solvers (Real/Complex
eigenvalues and Real/Complex matrix solver) existing FORTRAN routines were
used [42, LAPACK]. An explanation and tutorial to object oriented programming
in C++ can be found in [43, Stroustrup]. How to mix FORTRAN and C++ is
slightly machine and compiler-dependent. The compilers used herein were Watcom
C/C++ and Watcom FORTRAN (32 bit compilers), and the compiled FORTRAN
and C++ codes are linked together with the Watcom linker. Explanations of how
to mix the two languages using WATCOM are found in the user manuals [63].

7.2.1 Object Oriented Programming

Standard programming languages have two types of generalized structures. One
type is used to hold or gather data. In FORTRAN, common blocks are used for this
purpose while the more versatile struct is used in C. The other structure-type is
used to perform operations on these data (function and subroutine).

Object Oriented Programming (OOP) introduces a new type of structure, namely
objects, or more precisely a class (class is the name of the structure-type, as
in struct or function, while the word object is used to describe the ”physical”
entities when these classes are made in the computer’s memory). The most obvious
characteristics of these objects is that they have both data and functions/subroutines.
These functions and subroutines are called methods. This means that different
entities "knows” what they can do. For example a matrix object may have methods
to make the inverse, the transposed, multiply with other matrices etc.

Two versions of a program that multiplies two matrices, uses the resulting matrix
in a matrix solution, and print the solution, are shown in pseudo-code in Figure
7.10 and Figure 7.11. Using standard programming one needs one subroutine for

3Mounting three pickups on the disk/motor and setting the gain-phase analyzer in ”sync” mode
(synchronizing the analyzer to the valve opening), was not done because of time and founding limits.
4The program was developed on a UNIX workstation, and was moved to PC platform later.
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multiplication, one for solving and one for printing. It is also necessary to remember
all the arguments for these subroutines. In the object oriented version one can see
that all the code relating to multiplication, solution and printing can be hidden
within the matriz class. No calls to external subroutines (often with a large number
of arguments) are needed. The practical consequences of this is that large programs
become much easier to grasp, and more importantly: much easier to debug, because
all the functions and subroutines are completely independent of the main program
code. (The FORTRAN routines used in the FEM computer program are made as
methods within matrix objects, and are completely hidden from the main program).

Another important thing about OOP is abstraction and inheritance. Abstrac-
tion means that one can make classes that have no defined data or methods, only
the names of these methods. An abstract matrix class could for instance have an
undefined method called solve. Then one could make two different matrix classes
(Real and Complex) that inherit and define the method solve. Further down in the
hierarchy one could make specialized matrices (FEM stiffness matrices) that inherit
one or both of the methods depending on the matrix. With this approach it is pos-
sible to make abstract and quasi-abstract levels at the top, and make more concrete
code that inherits the definitions further down the hierarchy. The advantage is that
it is very easy to extend existing programs to include new routines and structures
and only relatively small modifications at the bottom levels are needed to change
existing structures. In the examples in Figure 7.10 and Figure 7.11 one would have
to change the main program to be able to print complex matrices using standard
programming (print and cprint). In the object oriented version this is not necessary
because the print routine is inside the object itself, thus the same main program can
be used.

Matrix A(n,m); Matrix A(n,m);

Matrix B(m,n); Matrix B(m,n);

Matrix C(n,n); Matrix D(n,1)

Matrix D(n,1); D.solve(A*B);
mult(A,n,m,B,n,m,C); D.print;
solve(C,D,n); end;
print(D,n,1);

end;

Figure 7.11: Pseudo-code
using object oriented pro-
Figure 7.10: Pseudo-code using gramming.
standard programming.
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7.2.2 Program pseudo-code

When using OOP standard flow charts are not right tool to describe the program
flow. The most obvious reason for this, is that there are practically no program
flow to describe. This is realized when remembering that all the methods needed to
perform operations on data within a specific class, also are inside this class. Thus
designing a program will be a task of deciding which classes to make, what kind of
data they shall have, the methods to operate on the data and how these classes shall
communicate with other classes. The communication process between classes is the
other reason for not using flow charts. Therefore in OOP, so-called pseudo-codes
are used both to describe the program and as a program design tool®.

An overview of the main classes and methods of the FEM FSI program used in
this thesis is given below:

Start Program
Make pipe_base
Make FEM_structures from pipe_base
Solve FEM_structures
Make output from (FEM_structures and pipe_base)
Write output
End program

When reading the pseudo-code the nouns are the objects (classes) in the program,
the verbs related to the nouns are the methods, while the prepositions relating two or
more classes defines the data transfer between these classes. This program therefore
consists of three main classes at the top level (in addition to the program itself):

e pipe base

— make

e FEM structures (all the FEM matrices, stiffness etc.)

— make

— solve
e output.

— make

— write

®Making a flow chart descibing the same overall functionality can of course be done, but this
chart will not be helpful in making a good object oriented program.
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In addition data has to be transferred from pipe base to output and FEM _struc-
tures, and from FEM structures to output.

Each of these top level classes are then divided in a hierarchical manner into
subclasses down to the code itself. The pipe base reads data from a input-file, do
some calculations (number of elements, lengths, moments of inertia etc.) and sets
up a database of the piping network. FEM structures reads data from pipe base
and make the global FEM matrices. The global system is then solved (eigenvalue or
frequency response, depending on the input). The output reads from pipe base and
FEM structures and writes the solution to various files. When the program ends
the data structures are destroyed (deleted in memory)®. Specialized matrix classes
were made, and most of the classes in FEM _structures were based on (inherited),
methods and data structures from these matrix classes.

6The program consists of approximately. 6600 lines of C++ code and 14300 lines of FORTRAN
(matrix solvers, LAPACK).



Chapter 8

Experimental and numerical
results

8.1 Introduction

The main objectives of this chapter are, (in relation to the general points on page
4), to verify the computer code by comparison with experimental data. A minor
objective is also to show that the proposed damping model can be used with success
for FSI calculations. This Chapter contains only the results. Discussions are given
in the next chapter.

All the experimental results are obtained from frequency response analysis of
pressure and acceleration recordings obtained from the system described in section
7.1 using the valve with various relative amplitudes and with three different discs.

8.2 Experimental results

The experiments were made using three different valve characteristics, discs with:
5.0mm amplitude, 2.5mm amplitude and 1.5mm amplitude. With each of these
discs different valve openings (Y;) were set. Pressure and accelerations were mea-
sured.

93
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8.2.1 2.5 mm amplitude

Two different series of experiments were performed, Yy = 10mm and Yy, = 15mm.

e Figure 8.1, Figure 8.3 and Figure 8.5 show pressure amplitudes from the ex-
periment and from calculations without coupling to have a comparison with
the calculations with coupling (FSI). Valve parameters for these figures are:
Yy = 15.0mm (Ag = 150mm?), Py = 93.2 + 1.0K Pa at the valve.

e Figure 8.2, Figure 8.4 and Figure 8.6 show the calculations with the same
parameters as above, but with FSI included. Damping as explained in Chapter
5 is also included.

e Results for Yy = 10mm are given in Figure 8.7 to Figure 8.10, where Figure
8.9 and Figure 8.10 are accelerations in x and y directions at the bend.

e In Figure 8.26 and Figure 8.27 comparisons between acceleration calculations
with and without FSI are shown. The calculations without FSI are done by
setting the Poisson ratio to zero, and using only the pressure-based coupling
(one way coupling at junction from pressure to structure as shown in Figure
4.2). In Svingen [45] this relation is shown where the calculations will be
uncoupled, but done simultaneously.

8.2.2 5 mm amplitude

Parameters for the valve with this disk were: Yy = 38.3mm (Ay = 383mm?), Py =
92.2 + 1.0K Pa (at the valve). The amplitude was 5.0mm.

e Results from calculations and experiments are in Figure 8.11 to Figure 8.16.
The calculations are done with and without damping.

e Figure 8.28 to Figure 8.30 are comparisons between acceleration-calculations
with and without FSI.

8.2.3 1.5 mm amplitude

Two series were performed also with this amplitude: Yy = 4.5mm , Py = 94.0 &+
1.0K Pa and Yy = 13.9mm, Py = 91.2 + 1.0K Pa. The amplitude of the valve was
1.5mm.

e Figure 8.17 to Figure 8.22 show the pressure for the two steady-state valve
openings.

e Figure 8.23 to Figure 8.25 show accelerations for Y, = 13.9mm.
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8.3 Numerical results

The results from the computer program are obtained with a system that has the
properties as given in Figure 7.1 and Figure 7.2 and in Table 7.1 and Table 7.2.
Details concerning the numerical procedures and discretization can be found in
Chapter 3 to Chapter 6. Timoshenko beam theory was used to model the bending
of the pipes.

8.3.1 Computer representation of experimental arrangement

The experimental system was represented in the computer program as follows (see
Figure 7.1 and Figure 7.2):

Nodes 1-5 ordinary pipe elements with appropriate thickness.
Nodes 5-8 pipe elements with flexibility factor (10.7).

Nodes 8-12 ordinary pipe elements with appropriate thickness.
Nodes 12-13 thick-walled ordinary pipe elements.

Nodes 13-16 ordinary pipe elements with appropriate thickness.

8.3.2 [Eigenvalues of the system

Eigenvalues of the system shown in Figure 7.1 was calculated without the valve
matrix just to give an idea of the frequencies involved and to see the differences
with and without FSI. In Table 8.1 the first 31 resonant-frequencies for uncoupled,
Poisson coupling, junction coupling and both couplings can be found.
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Table 8.1:

CHAPTER 8. EXPERIMENTAL AND NUMERICAL RESULTS

| Mode # | Uncoupled | Poisson | Junction | Both

1 2.0 2.0 2.0 2.0

2 3.6 3.6 3.6 3.6

3 6.0 6.0 6.0 6.0

4 10.3 10.3 10.3 10.3

5 12.4 12.4 12.4 12.4

6 19.8 19.8 19.7 19.6

7 22.2 22.2 221 22.1

8 291 F 292 (F) | 268 (F) |27.2 (F)
9 313 313 313 31.2

10 36.2 36.2 36.2 36.2

11 133 133 132 27

12 541 54.0 541 53.9

13 58.3 F 572 (F) | 57.1 (F) | 56.0 (F)
14 59.5 59.5 60.5 60.3

15 741 743 73.0 732

16 79.9 78.9 79.0 76.7

17 879 F 847 (F) | 821 (F) |79.1 (F)
18 96.5 96.6 96.4 96.4

19 100.8 101.7 101.7 102.3

20 111.6 1138 107.4 106.2

21 117.7 F 117.8 (F) | 120.3 (F) | 120.1 (F)
22 120.5 121.0 121.7 121.4

23 136.0 137.5 137.3 1374

24 137.8 139.1 137.8 139.7

25 1482 F 1453 (F) | 149.7 (F) | 147.9 (F)
26 158.0 158.7 158.0 158.2

27 171.7 171.6 171.6 171.6

28 179.6 F 176.9 (F) | 182.6 (F) | 182.7 (F)
29 184.0 184.1 188.6 189.8

30 207.4 207.4 2075 207.2

31 211.6 F 2082 (F) | 211.7 (F) | 208.5 (F)

The first 31 resonant frequencies calculated with various couplings. F

represents fluid modes [Hz].
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Figure 8.15: Acceleration in y-dir.
at bend (node 8). Y(=38.3mm,
Yer=5.0mm. Calculations: FSI, damp-
ing/no damping,.

1.0E+3

1.0E+2

>
mish2] T

R
o 7
< 7
1.0E1 o
1.0E-2 :I
3 —@— Experiment
] Calc. FSl and damping
1.0E-3 =t | ——— Calc. FSI no damping
1.0E-4

0.0 40.0 80.0 120.0 160.0
Frequency [Hz]
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Figure 8.22: Pressure at valve (node
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Chapter 9

Discussion

9.1 Eigenvalues

The resonant-frequencies presented in Table 8.1 indicate that the difference between
the various couplings are in general small. Larger deviations can be found in the fluid
resonant-frequencies than in the structural ones, which are literally identical below
70 Hz. The largest difference in fluid frequency between the uncoupled and the fully
coupled calculations is at mode number 17. At this frequency a pressure anti-node
is approximately at the bend, and it is also close to the first longitudinal frequency
of the horizontal pipe. However, it is the author’s opinion that great care should
be taken when looking at the resonant-frequencies alone. This is because the size of
the pressure amplitudes can be large also between the pressure resonant-frequencies
because of the FSI effects.

The reason for this lies in the mathematical fundamentals of eigenvalue analysis.
To be able to see the relative size of the pressure amplitudes between the pressure
resonant-frequencies (at structural frequencies between the fluid frequencies), one
must also look at the eigenvectors. Since both fluid and structure are involved with
different units, the eigenvector matrix should be both non-dimensional and ortho-
normal, to be able to extract this kind of information from it. Non-dimensionality
and orthonormality are no criteria to be able to do this. However, to extract this
information with a reasonable amount of work, and more importantly, be able to
visualize the results, it is an obvious advantage. Currently the program calculates
eigenvectors (orthogonal), but the non-dimensionality and orthonormality are not
yet implemented.
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9.2 Frequency response

The frequency response calculations reveal much more information than the eigen-
value analysis because the exact amplitude can be calculated.

9.2.1 FSI

The effect of FSI is clearly seen in Figure 8.1 to Figure 8.6. The uncoupled calcu-
lations deviate significantly from the experiments. The size of the amplitudes are
more or less the same, but the peaks are placed at different frequencies. The shapes
are also different.

The calculations with FSI show very good agreement with all the experiments. In
Figure 8.3 and Figure 8.4 one can see that there is a pressure peak in the experiment
at 40 Hz. The uncoupled analysis has actually a node at that frequency, while
the analysis with FSI correctly predict the peak. A similar situation happens at
approximately 90 Hz in Figure 8.5 and Figure 8.6.

9.2.2 The valve characteristics

Looking at the different figures (especially Figure 8.17 to Figure 8.22) one can see
that different steady state valve openings (Y;) have a large effect on the amplitudes.
This emphasizes the importance of being able to model other hydraulic piping com-
ponents besides the pipes with a high level of accuracy.

9.2.3 Accelerations

The measured and calculated accelerations with FSI show very good agreement,
even though the agreement is not as good as for the pressure amplitudes. All the
major acceleration peaks are correctly predicted by the program. Looking at Figure
8.14 one can see that the main peaks measured are at approximately 30, 40, 75, 100
and 120 Hz. These peaks, as well as their sizes, are predicted by the program.

The calculations without FSI (Figure 8.26 to Figure 8.30) shows good agreement
up to about 90 Hz. In the range from 90 to 120 Hz the uncoupled calculations have
much larger amplitudes than both experiments and calculations with FSI.

9.2.4 Damping

By looking at the figures showing calculations with and without damping, it is
very obvious that correct frequency-dependent damping is essential in obtaining the
correct maximum amplitudes for both accelerations and pressures. The damping
model used herein as explained in Chapter 5 shows very promising results. To obtain
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these results, it is necessary to choose an appropriate value for the damping constant,
A, for the corresponding pipe. It is therefore obvious that specialized experiments
and field measurements are needed to find the relations to other piping parameters
(roughness, diameter and Reg number). Good correspondence with experiments was
found with an A s-value of 34, 000.0, (smooth stainless steel pipe with inner diameter
of 80 mm).

9.3 Findings

The importance of being able to model the valve (and other hydraulic piping com-
ponents) is seen in Figure 8.17 to Figure 8.22. The peaks are more or less at the
same frequencies, but the shapes have changed. An extreme case is found in Figure
8.13 where the peaks are grown together to almost a continuous peak all the way
from 4.5 to 100 Hz.

A very interesting observation is found in Figure 8.26 to Figure 8.30, where
actually the calculations without FSI have larger amplitudes than the ones with FSI.
These unrealistic peaks from the calculations without FSI occur around the axial
resonant-frequencies of the two reaches. Looking at Figure 8.26 one can see that the
acceleration calculated without FSI at 100Hz, is approximately 10 times larger than
the one measured and the one calculated with FSI. The same phenomenon can be
observed at 110 Hz. These peaks are largest in x-direction at the bend, but can also
be found in the y-direction (Figure 8.27). A similar finding in time-domain can be
found in [56, Tijsseling and Lavooij]. At the midpoint of the horizontal reach this
effect is much smaller. The pressure amplitudes at the bend at these frequencies are
also much smaller for the experiments and calculations with FSI compared to the
calculations without FSI (see Figure 8.1 and Figure 8.3).

On the basis of these experiments only, it is difficult to give an explanation
to the reason for this damping effect due to FSI. The author believes that this
particular system have characteristic fluid- and structural eigenvalues that make
this damping effect, and that other systems may have characteristics that lead to
amplifications of the acceleration amplitudes. This explanation is strengthened by
[53, Tijsseling] where the effects of interaction, both in the pressures and in the
stresses/accelerations are reported to be strongly system-dependent. It is clear that
this effect in the calculations with FSI is not due to the proposed damping model
used. This can be seen by comparing Figure 8.14 and Figure 8.28.

Physically an uncoupled analysis (coupling only from fluid to structure) violates
the energy conservation. In an uncoupled calculation, all the fluid energy is trans-
ferred to the structure, but no energy is transferred back to the fluid. Besides, the
fluid transfers all its energy and still retains all of it, which of course is physically
impossible. The large differences between uncoupled calculations compared with
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experiments and FSI calculations (both pressures and accelerations) can therefore
be explained (at least in an overall picture) by the law of energy conservation, and
indeed strengthens the importance of being able to calculate the correct responses
in a piping system.

9.4 Discrepancies

Although the agreements with calculations and experiments are very good, some
discrepancies can be found. In the pressure amplitudes the calculations deviates
from the experiments in the range 20 to 40 Hz. This deviation is most obvious at
the bend (see for instance Figure 8.7). The calculated amplitudes are too large, and
the small short amplitudes found in the experiment are not found in the calculations.
There may be several reasons for this. The reason most likely is that the system is not
discretized with sufficient accuracy. Because the system changed shape when filled
with water, measurements had to be done ”by hand” with an accuracy of maximum
+1 em. The shape of the system was also difficult to discretize because of the curved
horizontal reach (see Figure 7.2). The pipe curved both ways with relatively small
deviations, and it was difficult to find the exact spots where the curves changed.
This reach was therefore approximated with three pipe lengths with 5 elements
each. The effect of this approximation is reflected in the bending vibrations because
the variable (42) describing the bending angle as well as the direction of w will be
slightly inaccurate at the connection points of the shorter pipe lengths, as shown in
Figure 9.1. By looking at the accelerations in y direction (for example Figure 8.10,
Figure 8.15 and Figure 8.16) one can find these short amplitudes. Another reason
might be that even though the valve support was modified by greatly adding both
stiffness and mass [49, Svingen], it still moved enough to affect the vibrations.

In the figures (Figure 8.17 to Figure 8.22) one can see that the calculated pressure
amplitudes in general are too large compared to the ones measured. This disagree-
ment extends throughout the frequency range, thus, a possible reason could be the
valve matrix. As mentioned in Chapter 6 the steady state flow through the valve
was not measured', but approximated with the relation:

Qo = p(Y)oy/29 (Hz — Hy)g

H, and Y were known (atmospheric pressure and steady state valve opening re-
spectively). Hj is the pressure just in front of the valve, and was measured with
the pressure transducer by averaging the signal over one minute using LabVIEW.
The inaccuracy connected to this steady state pressure measurement was that the

'The reason for not measuring the steady state flow was the design of the valve, optimized for
perfect sine functions.
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transducer was very close to the shutdown valve (0.10 m), thus, any disturbances
to the flow made by the valve, was picked up by the transducer. The parameter u
was approximated as the discharge area which is consistent with the loss coefficients
(¢ < 0.03) for a bellmouth when /D), > 0.2. (see [20]). For this valve the smallest
value of 7/ D), was 0.8, giving a hydraulic loss of maximum 0.02mWC (r is the radius
of the bellmouth and D, is the hydraulic diameter).

This discrepancy is only seen for the experiments with the 1.5 mm amplitude
discs. The clearance between the disk end the pipe-end (water side) of the valve
was 0.1 mm, thus some water would always go between the disc and the pipe-end
instead of going straight out. The relative effect of this leakage is greater for a disc
with small amplitude than a disc with a large amplitude.

Anyhow, the experiments with this disc are used to show the difference between
a large steady-state opening and a small steady-state opening, so the discrepancies
in this respect are less important, although it emphasizes the importance of accurate
modelling.
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Figure 9.1: Error in discretization of the horizontal pipe-reach, (exaggerated).
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9.5 Summary

Very good agreement between experiment and calculations are found, both for the
pressure amplitudes and the accelerations. Calculations without FSI deviate quan-
titatively and qualitatively by large amounts at various frequencies.

Axial acceleration-calculations without FSI give (at least in this particular case),
maximal accelerations 10 times larger than of those measured and calculated with
FSI. This suggests that piping designs based on vibration calculations without FSI,
can in fact be much too conservative than necessary.

The pressure amplitudes change when the valve changes its characteristics. This
shows the importance of being able to include a good representation of the valve in
the calculations. Other hydraulic piping components (pumps, turbines etc.) have
similar effects on the amplitudes.

As an example one can think that the valve in the experiment (Figure 7.1) is
replaced with a pump which has a given blade passing frequency of 90 Hz. For the
simplicity and purpose of this example, one can assume that the pump characteristics
are the same as the valve characteristics. By using a calculation without FSI one gets
the impression that this frequency will be an excellent one because (from Figure 8.5)
the pressure response has a node at this place. The experiment and the calculations
with FSI (Figure 8.6) show that the opposite is the case, namely a pressure peak.
This pump will therefore cause large vibrations in the system, especially at the pump
supports, and only a calculation with FSI will reveal it. For larger systems with
loops and branches, the differences between calculations with and without FSI, will
presumably be even larger.

An eigenvalue analysis reveals a lot of information about the system. However,
the author believe that it should be used with care because large pressure ampli-
tudes can be excited at frequencies where no actual fluid resonant-frequency (in a
mathematical and physical sense) exists. These pressure amplitudes are made solely
due to the FSI effects. The pressure peak at 90 Hz in Figure 8.6 is not predicted
by looking at the resonant frequencies, but is predicted by the frequency response
calculations.

The damping model seems to predict the frequency-dependent damping with
good accuracy, and it is very easy to include in the calculations. To be able to use
it for any given pipe and flow, further experimental and theoretical work are needed
to find the corresponding A; values.

9.6 Further work

The author has great belief in the FEM discretization, and further work will include
further development of the computer code. More specifically the program will be
extended from two-dimensional to three-dimensional piping network, and codes for
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elastic boundary conditions will be included. Research in developing the damping
model, to be able to use it for any given pipe, is also needed.

In general more experimental work is needed, both laboratory work and field
measurements, to give a broader basis for further enhancements of computer codes
and general design criteria.

Experimental and theoretical research in the field of acoustical sources as men-
tioned in Chapter 6.4 is also very important.

Fatigue analysis is a field where frequency response calculations often are prefer-
able when statistical input data are used. The same statistical fatigue analysis
techniques as used for marine risers and pipelines, as described in [27, Larsen],
can also be used for general piping systems. In [28, Larsen and Passano| and [27,
Larsen], time- and frequency-domain calculations have been compared and the con-
clusion was that frequency-domain calculations can be used with a high degree of
confidence even for nonlinear input (short-crested waves). Development of statistical
fatigue analysis calculation for use in general piping systems based on the research
done in marine riser analysis [9, Demirbilek] will be the next logical step.



Appendix A

Neglecting convective terms

The two-dimensional Navier-Stoke’s equations from Chapter 3 (continuity and mo-
mentum, Equation 3.1, Equation 3.2 and Equation 3.3) are:

Op (9/) 8/) (91)33 p 0

ov, 0v,, ov, Op
ary +P%%+Pra +% Fo+
(A.2)
+1 i 0v, N 18(7‘117") N 1 19, T@vw N 02v,
" 3# or \dx r Or H ror or 0x?
ov, ov, ov, Op
pat —i—pvw%—l—p 8 +8_ Fr‘i‘
(A.3)

.t 1 0 [ 0Ov, N 18(7‘%) n 1 0 r% N 02v,
3" )ar oz T ar F\rar \"ar Ox?
Introducing Stokes hypothesis [65]: (k4 1) = 0, and g—z = 1/a* where a®> = K/p
(neglecting the external body forces F,):
1op 1 0Op 1 Op Ovy ov, v,

a28t+ vmﬁx—i_gwg—i_p@x—i_p@r—i_?:o (A4)

(%I_{_ %+ %+8p B 181}I+82vm+82vm (A.5)
Por TP 8 TP Tar " P\rar T ar | ox2 '
ov, ov, ov, 8p 10v, 0%, 0%v,
Por TPy TPy ar_“(r8r+ar2+ax2) (A.6)

The following non-dimensional variables are used:

0 Ly 0 0 0 0 0 1 1
oL~ Voot oz Par o e q T hen
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A.1 Continuity

The continuity equation (Equation A.4) now becomes:

YooV Ope  VoroVe' - Ope  VoroVi' ~ Ops
Lo 2a2 Ot.  2Lga? 0w,  2Loa} " Or.

(A7)
po‘/O avm* POVO 8vr* + ‘/O Ur* o O
Lo 81’* LO 87“* LO T« a
Vi op. Vi Op. Vi Ope Oum  Ovm 1w,
5 T o Vx> T o Urs 3 — — =0
2a2 Ot, * Qa(%v O, * Qa(%v or. * Oz, * or. * Po Tx
Mg op. Mg~ Op. MG Op.  OQvw  Ovn L. o (48)

e Vs Upx
2 Ot, 2 0z, 2 or, Oz, or.  po T«

where the Mach number is defined as: My = Vj/ag. The following relations can be
found in Equation A.8 when considering very small Mach numbers, M? < 1, typical
for liquid pipe flow:

| Term | | Order | Smallness |
M:  Op. M¢
MTva*g—i* — O(MTZ) <1
70%8—?2 —|oF)| <1
(ZZ* — | 0(1) 1
%1;7;* — | o1 1

From this table one can see that the convective terms in the continuity equations
are very small at low Mach numbers, thus, reducing Equation A.4 and Equation A.8
to:

1 0p v, ov, Uy
——= — =0 A9
a28t+p8$+p8r+r (4.9)
M2 0p, Ovg. Ovy, 1 v,
=2y + T —
2 Ot, Oux, Ors — po T«

=0 (A.10)

This shows that the constraint Mg < 1 is sufficient to neglect all convective terms
in the continuity equations for one-dimensional and two-dimensional flow



A.2. MOMENTUM 115

A.2 Momentum
Applying the same non-dimensional variables to the momentum equations (Equation
A.5 and Equation A.6):
VoVopo Ovee  VopoVo  Ovee  VopVo  Ovss Vi Op,
0VopPg OV T 0Po Ovm* v I 0Po OU,«* v +P0 o 9P
LO (9t* LO (93:* LO 87“* 2L0 856*
_ ‘/OpfOVO 1 87)30* + 821193* 827}30*
L2 T Or, or? 2
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Rearranging:
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In Equation A.11 and Equation A.12 one clearly sees that the convective terms are of
order one, O(1), while the pressure terms are of order one half, O(1/2). This means
that the convective terms can not in general be neglected in the continuity equations
for two-dimensional flow, even when Mach numbers are very small. By applying
the relation from Equation A.10 into Equation A.11 and Equation A.12 one can

show that v,, 2= is small in Equation A.11 compared with 8;&* , and similar for the

O«
radial velocity in Equation A.12 (see Equation A.15). However, the terms v, ‘?,;’;**

and vg. %7;‘: can not be neglected unless this is a constraint of the flow (acoustics).

Flow in pipes is basically a one-dimensional phenomenon because the length
to diameter ratio is large (Lo/Dy > 1)[71]. Neglecting radial velocities and the
variations in radial direction gives the following non-dimensional continuity and

momentum equations:

Mg Op | Ove

> ot om " (A.13)
Oz Ovge  10p. 1 vy,
Ot o Vas O0x * 20z, Rep, 0x2 (A4.14)

The %”—aj”: term in Equation A.14 is substituted with the relation in Equation A.13:
Qe Mg  Op. 10p. 1 v,

ot. 2 "™0n. ' 20s. Rer, 02

(A.15)
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Considering MZ < 1 the following relation can be seen:

| Term | | Order | Smallness |
My Op. My
“a YrxTo, . 1
62 v o = | O( 5 ) <
v
o = | 01 1
oL (1)

Thus reducing Equation A.14 to:

Oy N 10p. 1 0%V
Ot 20zr, Rep, Ox2

(A.16)

Showing that both the constraints, MZ < 1 and one-dimensional flow, must be
applied to be able to neglect convective terms in the momentum equations for a
general flow field.

When neglecting the convective terms in the continuity equation because of the
constraint: MZ < 1, one obtain the equations describing so called weakly compress-
ible flow [22] which are valid for a general flow field with large gradients governed by
convective terms. In the one-dimensional case there is convection only in x-direction,
and this term is very small compared to the term, 22« governed by the pressure

Y Bty 0
gradient, thus leading to the same result as for acoustic approximation.
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Neglecting radial inertia

When neglecting the radial inertia it is enough to look at Equation 3.6 and Equation
3.7 if considering frequencies below the first radial resonant-frequency:

O0v, @_

Py ot + I =0 (Bl)
ov, Op
pfg + g =0 (B.Q)

and using the following non-dimensional variables:
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Equation B.1 and Equation B.2 becomes:
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Lo ot | or,
These two equations have the same characteristics only when:

Dy Ly 1
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When introducing the constraint for general piping systems: Ly/Dy > 1 = Dy/Lg <
1, one can see that the term QD—L%%”—J becomes very small compared to the term agti* ,
thus the radial inertia can be neglected.

One can also take the derivative of Equation B.5 with respect to r, and the

derivative of Equation B.6 with respect to z,, combine these equations and obtain:

Dy Ovpe Oy

=0 B.7
2L0 &v* (97“* ( )
For Dy/Ly < 1, the term %”—g can be neglected, and Equation B.7 becomes:
Oz
=0 B.8
or, (B.8)

which is essentially the same as averaging the velocity in the cross section of the
pipe (one-dimensional flow).



Appendix C

Viscoelastic equation

In this appendix it is proven that the linear ”viscoelastic equations” and the wa-
terhammer equations with added frequency-dependent friction are equivalent. The
waterhammer equations (Equation 5.22 and Equation 5.23) with nonlinear steady

state damping:

1op v
K Ot or
oV 1 0P VIV X\ 0*V
—t——— = _f_ 4 -
ot p; Ox 4R p; 0x?

Taking the derivative of Equation C.2 with respect to t:

PV 1PP 9 {flVW] A OBV

9 o om0t ot 4R | p, 02%01

Then taking the derivatives of Equation C.1 with respect to x:

r_ Y
otoxr 0r?

Using Equation C.4 in Equation C.3

otr  pp oz Ot
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The linear ”viscoelastic equations” as described on page 49:
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Taking the derivative of Equation C.7 with respect to t:

FV_LOP 0TIV
o?  p;0xdt Ot | AR

Then taking the derivative of Equation C.6 with respect to x:

%P 9%V o*V
gior ~ Ko Moo

Using Equation C.9 in Equation C.8:

PV KFV_ 0 [fVIV] | A 9V
o2 p; Ox? ~ 0t| 4R py 0?0t

(C.8)

(C.10)

Looking at Equation C.5 and Equation C.10 one can see that they are equal.
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Bending element

There are several ways of making the Finite Element matrices [35, Rao] [33, Petyt].
Here they are made in a similar manner as for the longitudinal pipe equation. The
equation describing the bending of the pipes (Equation 3.25):

o*w 0w
Ly + (ppAp + pfAf)W

Multiplying Equation D.1 with an arbitrary weight function 6, and integrating from
node a to node b:

E = flz,1) (D.1)

b 8471) b 8271) b

a

Applying integration by parts two times on the 6%472’ term:

b 9286 02w b 92w
EIP j @wdl‘ + (ppAp + pfAf)/a 6¥dl‘ =

Pwl® 1062w’ b
— {6%} + {%w} +/a 6f($,t)dl‘

(D.3)

The exact integrals on the right hand side of Equation D.3 are the boundary condi-
tions at the nodes for the shear forces and bending moments respectively. Since the
boundary conditions is properly taken care of with the external force term f(z,1),
they can be discarded. The weight functions are substituted with the shape function
vector and the displacement is approximated with:

w(r,t) ~ N'w

where
wi(t) =w(0,t) wy(t) = g—t:(O,t)
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ws(t) = w(L,t) wy(t) = %(LJ)

and L is the element length. Equation D.3 now becomes the Finite Element dis-
cretized equation:

b b
EI, / NooNLdaw + (p,Ap + prAs) / NN daw =

b (D.4)
/ N (z, t)dz
The shape functions are third orderaHermite polynomials:
m(z) =1—3 (%)2 +2 (%)3 (D.5)
na(z) =z — 2L (%)2 4L (%)3 (D.6)
i =3(3) 2(3) o
na(z) = —L (%)2 4L (%)3 (D.8)
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